
T E C H N O L O G Y I N A C T I O N ™

Asp.Net Core
and Azure with
Raspberry Pi 4

.Net Core Applications in
Raspbian OS
—
Sibeesh Venu

Asp.Net Core
and Azure with
Raspberry Pi 4

.Net Core Applications
in Raspbian OS

Sibeesh Venu

Asp.Net Core and Azure with Raspberry Pi 4: .Net Core Applications in
Raspbian OS

ISBN-13 (pbk): 978-1-4842-6442-3		 ISBN-13 (electronic): 978-1-4842-6443-0
https://doi.org/10.1007/978-1-4842-6443-0

Copyright © 2020 by Sibeesh Venu

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter
developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York,
1 NY Plaza, New York, NY 10014. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this
book is available to readers on GitHub via the book’s product page, located at
www.apress.com/978-1-4842-6442-3. For more detailed information, please visit
http://www.apress.com/source-code.

Printed on acid-free paper

Sibeesh Venu
Birkenfeld, Germany

https://doi.org/10.1007/978-1-4842-6443-0

To my mother, Thankamani

“When you are looking at your mother, you are looking at
the purest love you will ever know.” —Charley Benetto

Thank you for picking up this book and giving
me the most important and precious thing

you can share: your time.

v

About the Author��ix

About the Technical Reviewer��xi

Acknowledgments��xiii

Introduction���xv

Table of Contents

Chapter 1: �About Raspberry Pi��1

About Raspberry Pi��1

The History of the Raspberry Pi��2

About Raspberry Pi 4��3

Raspberry Pi 4 Accessories��5

Introduction to the Operating System��10

Raspbian���10

Windows 10 IoT��11

About Windows 10 IoT Core��12

Installing the Raspbian Operating System���12

Using NOOBS to Install the OS��17

Summary���18

Chapter 2: �Configuring Your Raspberry Pi���19

Enabling SSH���19

Enabling Wi-Fi Configuration��22

Checking Whether the Pi Is Connected to Wi-Fi���23

vi

Connecting the Raspberry Pi via SSH��23

Summary���28

Chapter 3: Setting Up the Prerequisites to Develop
the Application��29

Developing the Application��30

Using WSL��31

WSL vs. WSL2���31

Installing WSL���32

Installing the Linux Distribution���34

Setting Up the Connection to Raspberry Pi��36

Installing .NET Core on Ubuntu��40

Summary���42

Chapter 4: Creating and Deploying a .NET Core Application to
Raspberry Pi��43

Creating a .NET Core Application���43

Installing Visual Studio Code Remote WSL Extension��48

Rewriting the Application���51

Deploying the App to Raspberry Pi���52

Variables in VSCode���56

Debugging the App from Raspberry Pi���58

Summary���60

Chapter 5: �Playing with Azure IoT Hub and Our Application���������������63

Using Azure IoT Hub���63

Creating an Azure IoT Hub��64

Registering a Device in the IoT Hub���74

Table of Contents

vii

Connecting Raspberry Pi to Azure IoT Hub��76

Monitoring the Device Data and IoT Hub��81

Adding Custom Event Message Properties��85

Summary���86

Chapter 6: �Finally, A Windows Terminal That You Can Customize�������87

Using Windows Terminal��87

Windows Terminal Key Features��88

Configuring Windows Terminal���89

Windows Terminal Preview Version���91

Open Folders in Windows Terminal��91

Font Weight Support���91

Support to Open a Profile as a Pane���91

Change the Tab Color��92

Rename a Tab���93

Summary���93

Chapter 7: �Cloud to Device Communication��95

Cloud-to-Device Communication Options��96

Direct Methods���96

Twin’s Desired Properties���104

Cloud-to-Device Messages���120

Demo Application���125

Summary���127

Chapter 8: �IoT Edge���129

IoT Edge���129

IoT Edge Runtime���130

Creating an IoT Edge Device��132

Installing IoT Edge Runtime on Linux Systems��134

Table of Contents

viii

Deploying a Module to IoT Edge Device���142

Viewing Sent Messages���151

Summary���152

Chapter 9: �Developing IoT Edge Modules��153

Prerequisites��153

Setting Up VSCode���154

Creating an Azure Container Registry��156

Creating a New Project��158

Deploying the Modules to the Device���184

Viewing Device Messages���187

Summary���190

Chapter 10: �Azure IoT Central��191

Azure IoT Central��191

What Is Azure IoT Central���191

IoT Hub vs. IoT Central��192

Creating an IoT Central Application��192

Creating a Device���208

Getting the Device Connection Keys���209

Creating a Device Application That Sends Telemetry to IoT Central�������������211

Test Property and Command��219

Summary���228

�Summary���229

�Index��231

Table of Contents

ix

About the Author

Sibeesh Venu is a passionate learner who thinks that when you stop

learning, you become old, and he doesn’t want to feel old. In his career, he

has been awarded Most Valuable Professional from Microsoft five times

for his technical contributions to the community. His hobbies are reading,

writing, listening to music, and creating content on YouTube. He blogs

about what he learns at sibeeshpassion.com. He also owns two YouTube

channels—youtube.com/sibeeshpassion, where he creates content about

technology, and youtube.com/njanorumalayali, where he uploads videos

about what he does in his day-to-day life.

xi

About the Technical Reviewer

Massimo Nardone has more than 22 years of experience in security,

web/mobile development, and cloud and IT architecture. His true IT

passions are security and Android.

He has been programming and teaching others how to program with

Android, Perl, PHP, Java, VB, Python, C/C++, and MySQL for more than 20

years.

He holds a Master of Science in computing science from the University

of Salerno, Italy.

He has worked as a project manager, software engineer, research

engineer, chief security architect, information security manager, PCI/

SCADA auditor, and as a senior lead IT security/cloud/SCADA architect

for many years.

xiii

Acknowledgments

I want to dedicate this book to two women in my life—my mom and my

wife.

To my mom, Thankamani, who sacrificed her entire life for me and

struggled to make my life smooth. She worked hard without even noticing

that her health was failing, in order to make a good living for us. She

showered us with love, and she taught me what life is. She passed her

strength on to me so that I could achieve my goals.

And to my wife, Vaidehi, who has always believed in what I do, who

supported me in my bad days, and whom I believe as my soul. She

taught me how to be calm when I am disturbed. She taught me what

unconditional love is. She spent her time transforming me into a better

person.

Dev, my son, my joy, my pride, my blessing, my love. He gives me an

immense amount of happiness when I look at him.

My father, Venu, who played an amazing role in my life and in making

me the person I am today.

My sisters, Sini, and Siji, for having faith in me. A sister is an angel on

earth who brings out your best qualities, I am lucky to have you both. My

brothers-in-law, Sumesh, Shaiju, and Vaitheesh, for standing with me all

the time, no matter what the circumstances were.

My father-in-law, Ramakrishnan, and my mother-in-law, Usha, for

giving me continuous support all the time. Thank you for never letting the

words “in-law” get in between our relationship. You are the best in-laws in

the world.

xiv

Ajaybhasy, my friend, without whom I would have not selected

this profession. He has been the one true friend with whom I can share

anything.

I also want to dedicate this book to all my relatives, friends, and

followers. Without them I would not be where I am today.

A debt of gratitude to Jessica Vakilil for her continuous support in

editing this book to the state what you have now, to Aaron Black for his

initial support and for selecting me to write this book, and to everyone at

Apress for their belief in me and in this project.

And last, but certainly not least, you, the reader. Thank you for your

support.

Acknowledgments

xv

Introduction

We live in a world where everything is connected and the future is moving

toward IoT (Internet of Things). A Raspberry Pi is a tiny device with which

you can do some amazing things. Every device runs on an operating

system, and the Raspberry Pi device does too.

Experiencing the Raspberry Pi with the Raspbian Operating System

and ASP.NET Core is amazing. What if we added the power of Microsoft

Azure to it? That is a tremendous combo.

Here in this book, you will learn:

•	 What is Raspberry Pi?

•	 What are the possibilities of Raspberry Pi?

•	 What operating systems can be used with Raspberry Pi?

•	 What is the Windows 10 IoT Core?

•	 How do you set up Raspberry Pi with the Raspbian

Operating System?

•	 How do you run a .Net Core application on

Raspberry Pi?

•	 What is Azure IoT Hub and how do you work with it?

•	 What is Azure IoT Edge and how do you work with it?

•	 What is Azure IoT Central and how do you work with it?

Do you find any of these questions interesting? If you do, you are in the

right place. Let’s learn!

1© Sibeesh Venu 2020
S. Venu, Asp.Net Core and Azure with Raspberry Pi 4,
https://doi.org/10.1007/978-1-4842-6443-0_1

CHAPTER 1

About Raspberry Pi
Welcome to the first chapter; I am happy that you are here. In this chapter,

we will discuss the following topics:

•	 An introduction to Raspberry Pi.

•	 The history of Raspberry Pi.

•	 About Raspberry Pi 4.

•	 Accessories to be used with Raspberry Pi 4.

•	 The operating systems used with Raspberry Pi 4.

•	 How to install the operating system?

Let’s continue reading.

�About Raspberry Pi
According to Wikipedia, a computer is a machine that can be instructed

to carry out sequences of arithmetic or logical operations automatically

via computer programming. When I say “computer programming,” I mean

that we tell the computer what it needs to do via a set of operations called

programs.

https://doi.org/10.1007/978-1-4842-6443-0_1#DOI

2

You may be thinking, why I am giving an introduction to computer

programming here? The reason is that I will call the Raspberry Pi device

a minicomputer. The possibilities of this tiny device are endless. It can

perform a huge variety of tasks.

Figure 1-1 shows the Raspberry Pi 4, which was released in June 2019

by the Raspberry Pi foundation.

�The History of the Raspberry Pi
The Raspberry Pi is a tiny computer that uses one single board. It was

developed by the Raspberry Pi Foundation in the United Kingdom. The

initial motive for this project was to promote teaching basic computer

science in schools. The first version of the Raspberry Pi was released on

February 24, 2012. The latest Raspberry Pi version is RPI 4, as of 2019.

There are many operating systems that we can run on a Raspberry Pi;

some of them are listed here:

•	 Linux

•	 Windows 10 IoT Core (not supported by

Raspberry Pi 3 or 4)

Figure 1-1.  The Raspberry Pi 4

Chapter 1 About Raspberry Pi

3

•	 Windows 10 ARM64

•	 FreeBSD

•	 NetBSD

As of now, the maximum memory supported by the Raspberry Pi is

4GB. It has memory variants of 1GB and 2GB as well.

Now you have an idea about this device, you might wonder how

popular it is. Table 1-1 shows how many Raspberry Pi devices were sold in

the last few years.

�About Raspberry Pi 4
According to the creators of the Raspberry Pi, Raspberry Pi version 4 is

the most advanced and efficient Pi they have ever made. Here are some

reasons for such a claim:

•	 Dual 4K HDMI support.

•	 Fast data transfer with USB 3.0 and Gigabit Ethernet.

•	 Silent and energy efficient.

•	 Many variants, such as 1GB, 2GB, and 4 GB.

•	 Onboard wireless network connectivity and Bluetooth 5.0.

Table 1-1.  Raspberry Pi

Sales Over the Years

Year Sales

2015 5 million

2016 11 million

2017 15 million

2018 19 million

Chapter 1 About Raspberry Pi

4

Now, let’s look at the specifications of Raspberry Pi 4.

Figure 1-2.  Raspberry Pi 4 B model

Chapter 1 About Raspberry Pi

5

Here are explanations of the numbers shown in Figure 1-2:

	 1.	 A more powerful processor. The Raspberry Pi 4 uses

Broadcom BCM2711 SoC with a 1.5GHz 64-bit

quad-core ARM Cortex-A72 processor.

	 2.	 RAM options. With the Raspberry Pi 4, you can

choose 1GB, 2GB, 4GB or 8GB RAM, depending on

the model you select. This was not possible until

Raspberry Pi 3, as the maximum RAM provided was

1GB.

	 3.	 Gigabit Ethernet support. The older version

(Raspberry Pi 3) has only 100Mbit capacity.

	 4.	 Two additional USB 3 ports. Now you should be

able to transfer your data 10 times faster. Happy

transferring!.

	 5.	 Two USB 2 ports.

	 6.	 Micro HDMI support. Raspberry Pi 4 provides dual

4K displays. I love this feature, as now I can connect

two monitors to my Pi.

	 7.	 Micro HDMI.

	 8.	 Support for a USB C power supply. This is the first Pi

that supports a USB Type C device.

�Raspberry Pi 4 Accessories
If you are buying a Raspberry Pi alone from the store or online, keep in

mind that you will not get any accessories with it. You need the following

accessories to make it work, though.

Chapter 1 About Raspberry Pi

6

•	 Memory card. You must have an SD card. You can select

the memory card size. It purely depends on which

operating system you are going to install. When you

buy an SD card, just make sure that you follow these

guidelines.

•	 The minimum size requirement to write a Raspbian

image is 8GB, and you can install the Lite image of

Raspbian in 4GB. I always recommend a memory

card of 16GB or 32GB so that you won’t have to

worry about space (see Figure 1-3).

•	 Make sure that you buy a Class 10 memory card.

The card class determines the write speed of your

card. Class 10 has a write speed of 10MB/s and

class 4 has 4MB/s.

Chapter 1 About Raspberry Pi

7

•	 You should have a 5.1V/3A power adapter to charge

your Raspberry Pi (see Figure 1-4).

Figure 1-3.  32GB memory card

Chapter 1 About Raspberry Pi

8

•	 You also need a Micro HDM cable to connect your Pi to

the monitor (see Figure 1-5).

Figure 1-4.  5.1V/3A power adapter

Chapter 1 About Raspberry Pi

9

•	 Although you don’t specifically need a case for your Pi,

I do recommend you get one to keep it safe and clean

(see Figure 1-6).

Figure 1-5.  An HDMI cable

Chapter 1 About Raspberry Pi

10

�Introduction to the Operating System
The Raspberry Pi can be treated as a minicomputer, so we need an

operating system to work with it. There are many suitable operating

systems on the market now. When you buy a Raspberry Pi device kit, it

may already have a default operating system installed on the memory card,

which is the Raspbian Operating System. In this chapter, we explain how to

install the Raspbian OS onto a memory card.

�Raspbian
Raspbian is the one and only official operating system supported by the

Raspberry Pi foundation. You can install the Raspbian OS either manually

or with the help of NOOBS (New Out Of Box Software). As the name

implies, NOOBS is an easy operating system installation manager for the

Raspberry Pi.

Figure 1-6.  A Raspberry Pi 4 case

Chapter 1 About Raspberry Pi

11

�Windows 10 IoT
As you might have already known, in the world of IoT, we categorize

devices as single app devices or multi-app devices.

When you use an app to upload files to the cloud, this is an example

of a single app device. Your mobile and smart watch are good examples of

multi-app devices. I hope you get the idea.

In the same way, Microsoft introduced two editions of the

Windows 10 IoT:

•	 Windows 10 IoT Core.

•	 Windows 10 IoT Enterprise.

Table 1-2 lists the differences between them.

Table 1-2.  Windows 10 IoT Core vs. Windows 10 IoT Enterprise

Windows 10 IoT Core Windows 10 IoT Enterprise

A version of Windows 10 The full version of Windows 10, it shares

all the benefits of the worldwide Windows

ecosystem

Optimized for smaller devices Optimized for complex solutions

Receives fewer updates Receives more updates than IoT Core

Single-app support, one foreground app

at a time with a supporting background

application

Multi-app support as traditional Windows

Only UWP UI supported Full Windows UI supported (UWP,

WinForms, etc.)

Chapter 1 About Raspberry Pi

12

�About Windows 10 IoT Core
Now that you have learned about Raspberry Pi and its relevant operating

systems, it is time to start learning about Windows 10 IoT Core. Consider

that the Windows 10 IoT Core is a version of Windows 10, but is made for

smaller devices, for example, the Raspberry Pi. Although it is a smaller

version of Windows 10, there are many differences. Some of these are listed

in Table 1-3, which is updated as of September 2019. As the Windows 10

IoT core operating system is being updated, these differences may not be

the same in the future releases.

�Installing the Raspbian Operating System
In this section, we discuss the ways that you can install the Raspbian

operating system on your Raspberry Pi 4.

Table 1-3.  Windows 10 vs. Windows 10 IoT Core

Windows 10 Windows 10 IoT Core

FileOpenPicker API is supported FileOpenPicker API is not supported

Desktop Boot to the default app available in the operating

system

Inbox Cortana is supported Inbox Cortana is not supported

More supported drivers Fewer supported drivers when compared to

Windows 10

Support Remove-AppxPackage

PowerShell command

Doesn’t support Remove-AppxPackage

PowerShell command

Chapter 1 About Raspberry Pi

13

�Using the Raspberry Pi Imager

The Raspberry Pi foundation created a tool called Raspberry Pi Imager,

which allows you to easily write the Raspbian to an SD card. You can

download it from the Raspberry Pi official website, at https://www.

raspberrypi.org/downloads/. Once you are on the site, just select the

Imager to be used as per your operating system. See Figure 1-7.

Once you install the application, you will be asked to select the

operating system to be installed and to which SD card it must be installed.

See Figure 1-8.

Figure 1-7.  Select the Imager to be used

Chapter 1 About Raspberry Pi

https://www.raspberrypi.org/downloads/
https://www.raspberrypi.org/downloads/

14

Make sure that you have formatted your SD card; otherwise, the card

will not be shown after you click on the Choose SD Card button. It is worth

a mention that the name of the operating system is now Raspberry Pi OS; it

was previously called Raspbian. See Figure 1-9.

Figure 1-8.  Choose the appropriate OS and card

Chapter 1 About Raspberry Pi

15

Now click the Write button. The selected operating system will be

added to the SD card. Figure 1-10 shows the pop-up you will see once the

process is completed.

Figure 1-9.  After OS and SD card selection

Chapter 1 About Raspberry Pi

16

�Manually Downloading the Image and Writing

The next way to install is to download the OS image from the official

website (https://www.raspberrypi.org/downloads/). The image is in the

downloaded ZIP archive file, and the file is over 4GB. As it uses ZIP64 to

compress these files, we must use an unzip tool that supports ZIP64. Here

are the supported unzip tools in different operating systems.

•	 7 Zip: Windows.

•	 The Unarchiver: Mac.

•	 Unzip: Linux.

Note that the File Explorer in Windows XP does not support ZIP64, but

Windows Vista and later do.

Once you have unzipped the file, you can write this image to your SD

card by using any image-writing tools. My recommendation is to use the

Figure 1-10.  Raspbian OS installation complete

Chapter 1 About Raspberry Pi

https://www.raspberrypi.org/downloads/

17

balenaEtcher, which works on Windows, Linux, and macOS. If you are

using balenaEtcher, you don’t have to unzip the Raspbian image, as the

tool supports writing images directly from the ZIP file. You can learn more

about this tool at the official website at https://www.balena.io/etcher/.

�Using NOOBS to Install the OS
Another way to install a Raspbian OS on your SD card is to use

NOOBS. You can download NOOBS from https://www.raspberrypi.org/

downloads/. The good thing about NOOBS is that it generically supports

the installation of multiple operating systems, including these:

•	 Raspbian.

•	 Windows 10 IoT Core.

•	 LibreElec.

•	 Lakka.

•	 RISC OS.

•	 TLXOS.

•	 Screenly OSE.

•	 REcalbox.

•	 OSMC.

To set up the SD card, follow these steps:

	 1.	 Format the SD card.

	 2.	 Copy all the files from the extracted folder of the

downloaded NOOBS file. Make sure you copy the

contents, not the folder.

That’s it. When you boot the device the first time, it will ask you to

select the OS you want to install.

Chapter 1 About Raspberry Pi

https://www.balena.io/etcher/
https://www.raspberrypi.org/downloads/
https://www.raspberrypi.org/downloads/

18

�Summary
Congratulations, you have finished reading the first chapter! I am sure that

you have learned these topics.

•	 What Raspberry Pi is

•	 The specifications of the Raspberry Pi 4 device and the

accessories that you can use with it

•	 Operating systems to use with Raspberry Pi 4

•	 How to install the Raspbian Operating System on

Raspberry Pi 4

Now let’s move on to the next chapter.

Chapter 1 About Raspberry Pi

19© Sibeesh Venu 2020
S. Venu, Asp.Net Core and Azure with Raspberry Pi 4,
https://doi.org/10.1007/978-1-4842-6443-0_2

CHAPTER 2

Configuring Your
Raspberry Pi
In this chapter, you learn how to set up your Raspberry Pi for development

and deployment. You will be performing the following tasks, to be precise:

•	 Enabling SSH on the Raspberry Pi

•	 Adding the network information to the Pi so that it can

connect to the Wi-Fi

•	 Connecting the Pi to the Wi-Fi

•	 Connecting the Pi over SSH

Although these steps might sound a bit difficult, they are easily doable

if you follow the instructions in this chapter.

�Enabling SSH
Before you jump in and learn how to enable SSH, it is a good idea to

understand what SSH is. The key points about SSH are as follows:

https://doi.org/10.1007/978-1-4842-6443-0_2#DOI

20

•	 SSH stands for Secure Shell, and it is a cryptographic

network protocol.

•	 SSH uses operating network services securely over an

unsecured network.

•	 All the operations performed—such as authentication,

commands, output, file transfer, and so on—are

encrypted to protect against network attacks.

Here are the usual steps involved in any SSH connection.

	 1.	 The client tries to contact the server and initiate the

connection. In our case, we perform this task in a

terminal.

	 2.	 The server sends the public key.

	 3.	 Next is the negotiation process. Once that is done,

the secure channel will be opened.

	 4.	 Users log in to the server and performs the actions

they are intended to perform.

To manually connect and deploy our applications to the Raspberry Pi

and allow remote login, we must enable the SSH. If we don’t enable the

SSH, we will get the error ssh: connect to host raspberrypi port 22:

Connection refused, as shown in Figure 2-1.

To enable the SSH, follow these steps.

	 1.	 Run Notepad.

	 2.	 Click File ➤ Save As.

Figure 2-1.  Port 22 connection refused

Chapter 2 Configuring Your Raspberry Pi

21

	 3.	 Be sure to set the Save As Type option to All Files to

make sure that it is not saved as a text file. By default,

Notepad files are saved with a .txt extension. See

Figure 2-2.

	 4.	 Save the file to the boot drive of your SD card.

	 5.	 Close the file.

If you are running on a Mac, you can directly run this command in the

Terminal:

touch /Volumes/boot/ssh

Figure 2-2.  Save the SSH File

Chapter 2 Configuring Your Raspberry Pi

22

�Enabling Wi-Fi Configuration
In this section, you are going to connect the Raspberry Pi to the Wi-Fi. There

are many ways you can do this; the easiest way is to follow these steps.

	 1.	 Run Notepad.

	 2.	 Paste the following code into a Notepad file. Don’t

forget to change the country code, network name,

and network password to yours:

 country=US

 ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev

 update_config=1

 network={

 ssid="NETWORK-NAME"

 psk="NETWORK-PASSWORD"

 }

	 3.	 Click File ➤ Save As.

	 4.	 Be sure to set the Save As Type option to All Files

to make sure that the file is saved with the given

extension. By default, Notepad files are saved with a

.txt extension.

	 5.	 Name the file wpa_supplicant.conf and save it to the

boot drive of your SD card.

	 6.	 Close the file.

If you are running on a Mac, you can use this command to generate the

wpa_supplicant.conf file:

touch /Volumes/boot/wpa_supplicant.conf

Once the file is generated, open it and add the code mentioned above.

Chapter 2 Configuring Your Raspberry Pi

23

�Checking Whether the Pi Is Connected
to Wi-Fi
You have done enough configuration for now, so you can eject the SD card

and put it back to the Raspberry Pi. Make sure that you connect the power

cable to the Pi and wait for a minute or two to ensure it’s connected to the

given network.

To check the connection, you can go to the IP address of the default

gateway of your network. The IP address will typically be 192.168.1.1 or

192.168.0.1. Just typing the IP address in the browser will open the Admin

portal, where you can set the LAN, WAN, network management, and other

options. Once you are logged in, you can see all the devices connected to

the network. Figure 2-3 shows my router page as an example.

�Connecting the Raspberry Pi via SSH
Now that the device is configured and connected to the network, you can

connect the Pi by using SSH. To do this, you need three things:

Figure 2-3.  All devices connected to the Wi-Fi

Chapter 2 Configuring Your Raspberry Pi

24

•	 Hostname of the network.

•	 Username of the device.

•	 Password of the user.

By default, the username of the Raspberry Pi is Pi, the password is

raspberry, and the hostname is raspberrypi.local. Open any command

tool and enter the following command:

ssh pi@raspberrypi.local

You may be see this warning:

"The authenticity of host 'raspberrypi.local (2a02:8071:4191:

aa00:5aa1:8961:c3e2:9398)' can't be established.

ECDSA key fingerprint is SHA256:AkWljiM/KOrojYTMXJDxcP/

GPmj4TFY+AkVM/QDtYs8.

Are you sure you want to continue connecting (yes/no)?"

You must provide yes here.

In the next step, you will be asked to type the password of the user Pi.

If you provide the right username and password and if the connection is

successful, you will get the output shown in Figure 2-4.

Figure 2-4.  SSH command output

Chapter 2 Configuring Your Raspberry Pi

25

Now that you have connected to the device remotely and it’s on the

network, it’s a good idea to change the user password to something more

secure. You can easily do that by running the following command in the

SSH session you created:

sudo raspi-config

You will see the screen in Figure 2-5.

Now select the Change Password option. Select OK from the next

screen, shown in Figure 2-6.

Figure 2-5.  Raspberry Pi configuration window

Chapter 2 Configuring Your Raspberry Pi

26

You will be asked to enter the new password for the user. Once you

are done typing, press Enter. If everything went well, you should see the

window in Figure 2-7.

Figure 2-6.  Change Password warning window

Chapter 2 Configuring Your Raspberry Pi

27

Once you click OK and press Enter, the next screen will load, shown in

Figure 2-8. Click the the Finish button and press Enter.

Figure 2-7.  Password Changed Successfully window

Figure 2-8.  Finish the configuration

Chapter 2 Configuring Your Raspberry Pi

28

�Summary
In this chapter, you learned the following:

•	 What SSH is and how to enable SSH on a Raspberry Pi

device.

•	 How to set up Wi-Fi on a Raspberry Pi device.

•	 How to connect a Raspberry Pi device remotely

using SSH.

•	 How to change the default password of the Pi user.

We have many things to cover and an application to develop. Let’s

jump on to the next chapter.

Chapter 2 Configuring Your Raspberry Pi

29© Sibeesh Venu 2020
S. Venu, Asp.Net Core and Azure with Raspberry Pi 4,
https://doi.org/10.1007/978-1-4842-6443-0_3

CHAPTER 3

Setting Up
the Prerequisites
to Develop
the Application
In the last few chapters, we were busy setting up the Raspberry Pi device.

In this chapter, we concentrate on setting up our machine to create a

custom application so we can deploy and run it in our Raspberry Pi. This

chapter assumes that you have already set up your device. If you have not,

read the previous two chapters.

We will be developing the application using .NET Core, for several

reasons:

•	 It is an open source, general-purpose development

platform.

•	 It can be used to create applications for Windows,

macOS, Linux, and ARM64 processors.

https://doi.org/10.1007/978-1-4842-6443-0_3#DOI

30

•	 It is widely supported and maintained by the

community, so there are frameworks available for

cloud, IoT, machine learning, and so on.

•	 It supports multiple languages, such as C#, F#, C++,

and Visual Basic .NET.

•	 Good documentation is available to help users learn

and use it.

In this chapter, I assume that you have enough knowledge on this

topic. If you are not sure, read some of the articles at https://docs.

microsoft.com/en-au/dotnet/core. You can also try some examples at

https://github.com/dotnet/core. You can download the .NET Core from

https://dotnet.microsoft.com/download.

It is worth mentioning that the Pi Zero and Pi 1 models are not

supported. This is because the .NET Core JIT depends on armv7

instructions and they are not available in the earlier Pi versions.

�Developing the Application
To develop the application, we are going to use Visual Studio code. Here

are some reasons why I love Visual Studio Code (VSCode):

•	 It’s lightweight and powerful.

•	 It’s available for Windows, macOS, and Linux.

•	 It has built-in support for JavaScript, TypeScript, and

Node.js.

•	 It has support for other languages, as provided by its

wide varieties of extensions.

If you find any of these key points interesting, you can download this

tool at https://code.visualstudio.com.

Chapter 3 Setting Up the Prerequisites to Develop the Application

https://docs.microsoft.com/en-au/dotnet/core
https://docs.microsoft.com/en-au/dotnet/core
https://github.com/dotnet/core
https://dotnet.microsoft.com/download
https://code.visualstudio.com/

31

�Using WSL
First, let’s discuss what Windows Subsystem for Linux (WSL) is. The key

points of WSL are as follows:

•	 It allows developers to run a GNU/Linux environment

directly on Windows.

•	 It includes many command-line-tools, utilities, and

applications.

•	 If there is no WSL, you have to create an additional

Linux VM and run the programs there, which is a lot of

work.

�WSL vs. WSL2
The new version of WSL is WSL2. It has many advantages over the WSL

version. WSL2 has better file system performance and it uses the latest

virtualization technology. Since WSL2 uses a lightweight utility VM, it also

uses less memory on startup.

To install WSL2, you should be running Windows 10 with build 19041

or higher (version 2004).

You can easily determine your Windows version by running the winver

command in the command window (press the Windows key+R, and then

type winver). You’ll see a screen similar to Figure 3-1.

Chapter 3 Setting Up the Prerequisites to Develop the Application

32

As you can see in Figure 3-1, my Windows version is 1909. I am using

Surface Book 2, and the latest update is not yet compatible (as of writing

this book).

�Installing WSL
The optional feature, called Windows Subsystem for Linux, must be

enabled before you can install any Linux distributions. To do that, run the

following command in your PowerShell as the administrator:

dism.exe /online /enable-feature /featurename:Microsoft-

Windows-Subsystem-Linux /all /norestart

Figure 3-1.  Windows 10 version

Chapter 3 Setting Up the Prerequisites to Develop the Application

33

You should see the output shown in Figure 3-2.

If your system meets the criteria needed to install WSL2, you must

enable the Virtual Machine Platform feature. You can do that by running

the following PowerShell command:

dism.exe /online /enable-feature /featurename:VirtualMachinePla

tform /all /norestart

You can also set WSL2 as your default version. This comes in handy

when you install a new Linux distribution.

wsl --set-default-version 2

Don’t forget to restart your machine before you go to the next step. If

you do not restart it, you will get the error shown in Figure 3-3.

Figure 3-2.  Enabling Windows Subsystem for Linux

Figure 3-3.  Optional component is not enabled

Chapter 3 Setting Up the Prerequisites to Develop the Application

34

�Installing the Linux Distribution
We are going to install the Linux distribution from the Microsoft Store. I

recommend Ubuntu 20.04 LTS, as it is the latest version of Ubuntu. You can

either open the https://aka.ms/wslstore URL in the browser, or search

the Microsoft Store app and then search for Ubuntu (see Figure 3-4).

Now click the Get button, as shown in Figure 3-5.

Figure 3-4.  Microsoft Store search result

Figure 3-5.  Get Ubuntu

Chapter 3 Setting Up the Prerequisites to Develop the Application

https://aka.ms/wslstore

35

The system will start downloading Ubuntu. The file is around 500MB,

so the download can take a few minutes, depending on your network

speed. Once the installation is complete, you can click the Launch button

in the Microsoft Store.

The initial installation may take some time and the command screen

will ask you to enter your proposed UNIX username. This username

doesn’t need to match your Windows username. You can be selective here.

After you set your username, you’ll need to enter a password. Make

sure you enter the correct password when asked to retype it. Figure 3-6 is

for your reference.

Figure 3-6.  Ubuntu setup screen

Chapter 3 Setting Up the Prerequisites to Develop the Application

36

Boom, you have successfully set up Subsystem for Linux in

Windows!

�Setting Up the Connection to Raspberry Pi
In this section, you will do the following tasks:

•	 Create a new SSH key.

•	 Copy the public key to Raspberry Pi. If you don’t do

this, you will be asked to type the password every time

you deploy your app to Raspberry Pi.

•	 Install the Visual Studio debugger on the Raspberry

Pi, which is needed in the next step, as you will be

deploying your application.

This section assumes that your Raspberry Pi is known as raspberrypi.

local. You need to make sure that you can connect to the Raspberry Pi via

SSH. If you are on Linux, just open a new Terminal and type the following

command.

ssh pi@raspberrypi.local

If you are on Windows, search for the keyword wsl in the Windows

search box and then open the WSL Run Command to start a new Linux

terminal command prompt. Once the prompt is opened, type the ssh pi@
raspberrypi.local command to connect to your Raspberry Pi.

If you are using WSL1, you will receive this error:

ERROR: ssh: Could not resolve hostname raspberrypi.local: Name

or service not known"

Note that this issue has been fixed in WSL2. To fix this error in WSL1,

you have to change the hostname to the IP address of the Raspberry Pi. To

get the IP address, run the ping command, as shown in Figure 3-7.

Chapter 3 Setting Up the Prerequisites to Develop the Application

37

As you can see, the ping command shows the IPV6 address, but we

need the IPV4 address. To get that, run the same command with -4 on the

end. Here is how the command will look:

ping raspberrypi.local -4

Figure 3-8 shows the results.

Now change the hostname in the previous command to the IP address.

The new command should look like this:

ssh pi@192.168.0.80

Figure 3-7.  Ping raspberrypi.local

Figure 3-8.  Ping raspberrypi.local IPV4

Chapter 3 Setting Up the Prerequisites to Develop the Application

38

Next, update the Raspberry Pi OS and reboot it.

sudo apt update && sudo apt upgrade && sudo reboot

You should see the output shown in Figure 3-9.

We now need to generate a new SSH certificate and copy the public

certificate to Raspberry Pi. To do that, we’ll run the previous command in

the same command prompt. First make sure that you are in the current

user’s home directory before you run the command. By default, the

command prompt will open in the Windows System32 folder. It is not

recommended you modify this folder. Figure 3-10 shows the results when

we run the cd command.

Figure 3-9.  Updating the Raspberry Pi OS

Chapter 3 Setting Up the Prerequisites to Develop the Application

39

Now you can run the command:

ssh-keygen -t rsa && ssh-copy-id pi@192.168.0.80

You should see the output in Figure 3-11.

To install the Visual Studio Code .NET debugger in Raspberry Pi, you

simply run the following command. Keep in mind that you can use your

Raspberry Pi name instead of the IP address if you are running WSL2.

ssh pi@192.168.0.80 "curl -sSL https://aka.ms/getvsdbgsh | bash

/dev/stdin -r linux-arm -v latest -l ~/vsdbg"

Figure 3-10.  User’s home directory

Figure 3-11.  Copy SSH to Raspberry Pi

Chapter 3 Setting Up the Prerequisites to Develop the Application

40

You should see the output in Figure 3-12.

�Installing .NET Core on Ubuntu
Since we will be creating a .NET Core application, we need to install

NET Core next. Go to the .NET Core download page at https://dotnet.

microsoft.com/download and install the .NET Core SDK. If you are

running WSL in Windows 10 like me, you need to install the SDK on the

Windows WSL Linux distribution.

First, add the Microsoft package signing key to your list of trusted keys

and add the package repository. To do that, run the following command at

the WSL command prompt:

wget https://packages.microsoft.com/config/ubuntu/20.04/

packages-microsoft-prod.deb -O packages-microsoft-prod.deb

sudo dpkg -i packages-microsoft-prod.deb

This command will ask you to type the user password. If you forgot the

password, you can open a new command window and run the following

command to open the WSL as a root user:

wsl --user root

Figure 3-12.  Installing the debugger

Chapter 3 Setting Up the Prerequisites to Develop the Application

https://dotnet.microsoft.com/download
https://dotnet.microsoft.com/download

41

Now type the following command to change the user password. You

will be asked to type the new password:

passwd sibeeshvenu

Figure 3-13 shows this process.

Figure 3-14 shows the output of adding the Microsoft package signing

key.

Now you can install the .NET Core SDK by running the following

command.

sudo apt-get update; \

 sudo apt-get install -y apt-transport-https && \

 sudo apt-get update && \

 sudo apt-get install -y dotnet-sdk-3.1

Figure 3-13.  Changing the user password in WSL

Figure 3-14.  Adding the Microsoft package signing key

Chapter 3 Setting Up the Prerequisites to Develop the Application

42

If you don’t get any errors from the Terminal, you are good to go.

Congratulations!

�Summary
In this chapter, you learned about the following topics:

•	 What VSCode is and why it is so popular.

•	 What WSL is and why is it important.

•	 How to enable WSL and the differences between WSL1

and WSL2.

•	 How to install the Linux Distribution (Ubuntu) on

Windows 10.

•	 How to set up Raspberry Pi to connect with Ubuntu.

•	 How to install .NET Core on Ubuntu.

Now take a deep breath and relax. You did well! It’s a good time to take

a coffee break.

Chapter 3 Setting Up the Prerequisites to Develop the Application

43© Sibeesh Venu 2020
S. Venu, Asp.Net Core and Azure with Raspberry Pi 4,
https://doi.org/10.1007/978-1-4842-6443-0_4

CHAPTER 4

Creating and
Deploying a .NET
Core Application
to Raspberry Pi
In the last chapter, we set up our machine. In this chapter, we are going to

create a .NET Core application and deploy it to Raspberry Pi. This chapter

assumes that you followed all the steps mentioned in Chapter 3. If you are

not sure, please review that chapter.

�Creating a .NET Core Application
By just running two commands, you can easily create a sample dummy

application in VSCode. Later, we will be editing that solution. Sound good?

If it does, open a new terminal and run the following commands.

mkdir raspberrypi.net.core && cd raspberrypi.net.core

https://doi.org/10.1007/978-1-4842-6443-0_4#DOI

44

This command will generate a new folder called raspberrypi.net.core

and change the current working directory to that new folder. This cd

command is also known as chdir (change directory).

Now run the following command to generate a new solution.

dotnet new console --langVersion=latest && dotnet add package

iot.device.bindings

If everything goes well, it will do the following:

•	 Create an empty console application, since we

provided the console template in the command.

•	 Perform some post-creation actions, such as dotnet

restore.

•	 Add the package reference that we provided in the

command. In this case, it is iot.device.bindings.

This iot.device.bindings package gives us a set

of device bindings that use system.device.gpio to

communicate with a microcontroller.

•	 Restore the given package.

Once the restore is finished, all the required files and references will be

available in our solution. The sample output is shown in Figure 4-1.

Chapter 4 Creating and Deploying a .NET Core Application to Raspberry Pi

http://raspberrypi.net

45

Let’s open this folder and see which files were generated; see Figure 4-2.

You can see that there is one folder called obj. This is where the

temporary object files and other files are stored to create the final library.

The final library is stored in the folder called bin, which we will explain

once we compile our application. Now just right-click the root folder and

open it in Visual Studio Code. If you don’t see the Open with Code option

in the right-click menu, the easiest way to fix that issue is to reinstall

VSCode and make sure to select the check boxes shown in Figure 4-3.

Figure 4-1.  Project creation output

Figure 4-2.  Created project folder structure

Chapter 4 Creating and Deploying a .NET Core Application to Raspberry Pi

46

Note that you can also run code . from the command-line tool itself.

Visual Studio Code will then open the project in the current folder.

If your VSCode displays a popup saying that a C# extension is

recommended when you open the Program.cs file, go ahead and install it.

See Figure 4-4.

Figure 4-3.  Open with Code options should be selected

Figure 4-4.  C# extension for VSCode

Chapter 4 Creating and Deploying a .NET Core Application to Raspberry Pi

47

If you have ever wondered what is happening when you install an

extension, you can see that process in the output window, shown in

Figure 4-5.

Now it’s time to run the application the first time. The easiest way is to

press the F5 button; however, you can always go to the Run menu and click

the Start Debugging submenu. If it asks you to select the environment,

choose .NET Core.

A file called launch.json will be generated in the .vscode folder. This

is where we set the debugging options for our application. You can also see

that there is another file generated in the same folder, called task.json.

This file specifies how to compile the project. We will be talking about

these files in a coming section.

If everything goes well, you should see a "Hello World!" message in

your debug console. If you are not sure where this message comes from,

just look at the Program.cs file. This is how your Program.cs file looks:

Figure 4-5.  C# extension installation output

Chapter 4 Creating and Deploying a .NET Core Application to Raspberry Pi

48

using System;

namespace raspberrypi.net.core

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("Hello World!");

 }

 }

}

You will be rewriting this code later. But before you do that, you need to

make some changes to the Visual Studio Code.

�Installing Visual Studio Code Remote WSL
Extension
If you have ever wondered how to use the Windows Subsystem for Linux

(WSL) as your full-time development environment right from VSCode,

Visual Studio Code Remote WSL extension is the answer. It allows you to

use a Linux-based environment, including the toolchains and utilities, and

run and debug Linux-based applications from Windows. Sound good?

If you get the prompt shown in Figure 4-6 when you open your project

in VSCode, go ahead and install it.

Chapter 4 Creating and Deploying a .NET Core Application to Raspberry Pi

49

You can also install it from the Extensions page in VSCode, as shown in

Figure 4-7.

After the installation, reopen your VSCode. If you get a prompt saying

that “Required assets are missing,” as in Figure 4-8, select Yes to add them.

Figure 4-6.  Install Remote WSL

Figure 4-7.  Install Remote WSL from the Extensions page

Chapter 4 Creating and Deploying a .NET Core Application to Raspberry Pi

50

The project should already be opened in the VSCode, so we need

to open it in WSL. To do that, press F1 and begin typing Remote-WSL:

Reopen in WSL. As you type the words, the option should appear and you

can select it. If the project is not opened in VSCode, you can directly open

it in WSL by typing and selecting Remote-WSL: New Window Using Distro.

See Figure 4-9.

This will reopen the VSCode in WSL and you should see the indication

in your VSCode, as shown in Figure 4-10.

Figure 4-9.  Reopen the folder in WSL

Figure 4-10.  Editing on WSL Ubuntu

Figure 4-8.  Required assets to build and debug

Chapter 4 Creating and Deploying a .NET Core Application to Raspberry Pi

51

�Rewriting the Application
In this section, we rewrite the Program.cs file to read the CPU temperature

of the Raspberry Pi device. This is how your file will look.

using System;

using Iot.Device.CpuTemperature;

using System.Threading;

namespace raspberrypi.net.core

{

 class Program

 {

 �private static CpuTemperature rpiCpuTemp = new

CpuTemperature();

 static void Main(string[] args)

 {

 while (true)

 {

 if (rpiCpuTemp.IsAvailable)

 {

 �Console.WriteLine($"The CPU temperature

at { DateTime.Now } is { rpiCpuTemp.

Temperature.Celsius }");

 }

 Thread.Sleep(1000);

 }

 }

 }

}

Chapter 4 Creating and Deploying a .NET Core Application to Raspberry Pi

52

�Deploying the App to Raspberry Pi
The first thing to do is to make sure that your Raspberry Pi is switched on

and connected to the Wi-Fi. We will be editing the launch.json file first.

Let’s talk about that file now. It contains attributes such as name, type, and

request. These are mandatory attributes of a launch.json file.

�The Name Attribute

This attribute provides a meaningful name to your configuration. It’s found

in the Debug launch configuration drop-down, as shown in Figure 4-11.

Figure 4-11.  Launch JSON name attribute

Chapter 4 Creating and Deploying a .NET Core Application to Raspberry Pi

53

�The Request Attribute

Currently (as of June 2020), request has two supported values—launch

and attach. The easy way to explain the difference between launch and

attach is to think of a launch configuration as a recipe for how to start

your application in debug mode before VSCode attaches to it, while an

attach configuration is a recipe for how to connect VSCode’s debugger to

a process that is already running.

�The Type Attribute

This attribute sets the type of debugger to use with this launch

configuration. It depends on the environment. As you select an

environment, each debug extension has a different type. For example, the

node type is for the built-in node debugger.

Another important attribute in the launch.json file is preLaunchTask.

This launches a task before the start of a debug session. We will define this

task in the task.json file and use that task name here.

To deploy the application to Raspberry Pi, we must compile this

application for Linux arm, and we can do that by configuring our VSCode.

We do this configuration using the task.json file. Once we compile the

application, we will copy our program to Raspberry Pi, using Rsync.

�The Rsync Attribute

There are many ways that you can transfer your files from your computer

to Raspberry Pi. Two popular ways are using SCP and Rsync. There are

significant differences between those two. Let’s cover a few of them:

•	 SCP stands for Secure Copy Protocol. It reads the

source file and writes to the destination by performing

a plain linear copy. Rsync also does the same, but with

an efficient algorithm and a few optimizations that

make the transfer faster.

Chapter 4 Creating and Deploying a .NET Core Application to Raspberry Pi

54

•	 Instead of just copying, Rsync will check for the file

sizes and modification timestamps to make sure only

changes or differences are copied. This makes the

transfer a lot faster. It’s also easier to synchronize the

files on the source and destination.

•	 Rsync has an option for resuming the transfer if it is

interrupted, whereas SCP doesn’t have this feature.

•	 Last but not the least, according to OpenSSH

developers on Wikipedia in 2019, the SCP protocol

is outdated, and they recommend using modern

protocols like Rsync.

Feel free to check out more about Rsync at https://rsync.samba.org/.

Let’s open our task.json file and update the code with Rsync. This file

is responsible for the following jobs:

•	 Compiling the application.

•	 Copying the code to Raspberry Pi (yes, we use Rsync for

this purpose).

Now you can edit the task.json file as follows.

{

 "version": "2.0.0",

 "tasks": [

 {

 "label": "RpiPublish",

 "command": "sh",

 "type": "shell",

 "problemMatcher": "$msCompile",

 "args": [

 "-c",

Chapter 4 Creating and Deploying a .NET Core Application to Raspberry Pi

https://rsync.samba.org/

55

 �"\"dotnet publish -r linux-arm -c

Debug -o ./bin/linux-arm/publish

./${workspaceFolderBasename}.csproj && rsync -rvuz

./bin/linux-arm/publish/ pi@192.168.0.80:~/${wo

rkspaceFolderBasename}\"",

]

 }

]

}

Here, RpiPublish is our task name and you might have noticed that we

use the rsync -rvuz command. This copies the files from our computer to

the Raspberry Pi.

Let’s use this task in the launch.json file now. The launch.json file is

responsible for these jobs:

•	 Calling the build tasks.

•	 Asking Raspberry Pi to start the Visual Studio Code

debugger.

•	 Loading the application.

In the end, this is how your launch.json file will look.

{

 "version": "0.2.0",

 "configurations": [

 {

 "name": "Rpi Publish and Debug",

 "type": "coreclr",

 "request": "launch",

 "preLaunchTask": "RpiPublish",

 �"program": "~/${workspaceFolderBasename}/${workspace

FolderBasename}",

Chapter 4 Creating and Deploying a .NET Core Application to Raspberry Pi

56

 "cwd": "~/${workspaceFolderBasename}",

 "stopAtEntry": false,

 "console": "internalConsole",

 "pipeTransport": {

 "pipeCwd": "${workspaceRoot}",

 "pipeProgram": "/usr/bin/ssh",

 "pipeArgs": [

 "pi@192.168.0.80"

],

 "debuggerPath": "~/vsdbg/vsdbg"

 }

 }

]

}

Note that I used pi@192.168.0.80 everywhere, because I am running

WSL version 1. If you are running in Linux or using WSL2, you should

change that to pi@raspberrypi.local.

�Variables in VSCode
You can see that we are using the ${workspaceRoot},

${workspaceFolder}, and ${workspaceFolderBasename} variables in

our task.json and launch.json files. These are VSCode’s predefined

variables. The syntax to use them is ${variablename}. Some of the other

variables are listed in Table 4-1.

Chapter 4 Creating and Deploying a .NET Core Application to Raspberry Pi

57

Table 4-1.  VSCode Variables

Variable Name Description

${workspaceFolder} The path of the folder opened in VSCode

${workspaceFolderBasename} The name of the folder opened in VSCode

without any slashes (/)

${file} The current opened file

${relativeFile} The current opened file relative to

workspaceFolder

${relativeFileDirname} The currently opened file’s dirname relative

to workspaceFolder

${fileBasename} The currently opened file’s basename

${fileBasenameNoExtension} The currently opened file’s basename with no

file extension

${fileDirname} The currently opened file’s dirname

${fileExtname} The currently opened file’s extension

${cwd} The task runner’s current working directory

on startup

${lineNumber} The currently selected line number in the

active file

${selectedText} The currently selected text in the active file

${execPath} The path to the running VSCode executable

${defaultBuildTask} The name of the default build task

Chapter 4 Creating and Deploying a .NET Core Application to Raspberry Pi

58

You can also create a new task to view the values of each variable. So

let’s create a new task in the task.json file.

{

 "label": "Echo VSCode Variables",

 "type": "shell",

 �"command": "echo ${workspaceRoot} | echo ${work

spaceFolder} |echo ${workspaceFolderBasename}"

}

Now press the F1 button and type Tasks: Run Task. Select the Echo

VSCode Variables and the Continue Without Scanning the Output options.

The variables’ values will appear in the terminal, as shown in Figure 4-12.

�Debugging the App from Raspberry Pi
Keep in mind that you should install the ms-dotnettools.charp extension

in your WSL too. See Figure 4-13.

Figure 4-12.  Showing the VSCode variables

Figure 4-13.  Install the ms-dotnettools extension

Chapter 4 Creating and Deploying a .NET Core Application to Raspberry Pi

59

Now it’s time to run the application and deploy it to the Raspberry Pi.

Click Run and add a breakpoint on any line you wish in Program.cs. Select

the Rpi Publish and Debug configuration and then click the green icon on

the left side of the configuration. See Figure 4-14.

Once you click the green icon, you will see a lot of things happening in

the terminal. Figures 4-15 and 4-16 show the output of the debug session.

Figure 4-14.  How to debug

Chapter 4 Creating and Deploying a .NET Core Application to Raspberry Pi

60

�Summary
Wow, that was amazing, right? In this chapter, you learned the following:

•	 How to create a .NET Core application?

•	 How to install Visual Studio Code Remote with the WSL

extension?

Figure 4-16.  The Debug window console

Figure 4-15.  The Debug window

Chapter 4 Creating and Deploying a .NET Core Application to Raspberry Pi

61

•	 How to read the CPU temperature of the Raspberry Pi

device?

•	 How to deploy the application to Raspberry Pi?

•	 What Rsync is?

•	 The variables in VSCode.

•	 How to debug the application running in the Raspberry

Pi device in VSCode?

Are you excited for the next chapter? I can’t wait to see you there.

Chapter 4 Creating and Deploying a .NET Core Application to Raspberry Pi

63© Sibeesh Venu 2020
S. Venu, Asp.Net Core and Azure with Raspberry Pi 4,
https://doi.org/10.1007/978-1-4842-6443-0_5

CHAPTER 5

Playing with Azure
IoT Hub and Our
Application
In the last chapter, you learned how to read the CPU temperature of your

Raspberry Pi device and write the data to the console. The plan was to

send this data to Azure IoT Hub, as there are many advantages to doing

so. In this chapter, you will create an Azure IoT Hub and make your

application send the temperature data to it.

�Using Azure IoT Hub
Azure IoT Hub is an Azure service that helps you ingest telemetry data

(for example, the CPU temperature we read from Raspberry Pi) from your

IoT devices into the cloud to store and process. It acts as a central hub

for bi-directional communication (from the device to the cloud and from

the cloud to the device) between your IoT application and the managed

devices.

https://doi.org/10.1007/978-1-4842-6443-0_5#DOI

64

Once the data is in the cloud, we can do many things with it. We will

discuss these uses in the coming sections. Before you create an Azure

resource, you should have a valid Azure subscription. If you don’t have a

subscription, no worries, you can always create one for free. All you have

to do is go to https://azure.microsoft.com/en-us/free/ and click the

Start Free button. You will have to sign in with your Microsoft account or

sign up for a new one.

�Creating an Azure IoT Hub
Creating an Azure IoT Hub is as easy as drinking a glass of water. Lol, I

mean it. There are two ways that you can create it.

•	 Using Azure Cloud Shell.

•	 Using Azure Portal.

We will discuss both of these options so that you can select the one that

is more convenient for you.

�Using Azure Cloud Shell

To create Azure services using a Cloud Shell, you must sign in to your

Azure Portal (https://portal.azure.com/) and go to https://shell.

azure.com/. You will be asked to select a directory if you have multiple

directories in your Azure Portal. See Figure 5-1.

Chapter 5 Playing with Azure IoT Hub and Our Application

https://azure.microsoft.com/en-us/free/
https://portal.azure.com/
https://shell.azure.com/
https://shell.azure.com/

65

Clicking the directory will start the process. If you get the message

saying that "No storage account mounted", you will have to create a

storage account. If you are wondering why you need a storage account, it’s

used to persist the files of this shell. Note that creating a storage account

will incur a small monthly cost. You can always see the pricing details

at https://azure.microsoft.com/en-us/pricing/details/storage/

files/.

The default subscription will be selected on the screen, but you can

also change this. Click the Show Advanced Settings link, which is where

you set the right resource group, storage, and so on. See Figure 5-2. You

can use the existing resources or create a new resource. A resource group

is just a collection of resources that share the same lifecycle, permissions,

and policies.

Figure 5-1.  Select a directory in the shell

Chapter 5 Playing with Azure IoT Hub and Our Application

https://azure.microsoft.com/en-us/pricing/details/storage/files/
https://azure.microsoft.com/en-us/pricing/details/storage/files/

66

Once you fill out the details, click the Create Storage button. This will

start a new Cloud Shell for you, as shown in Figure 5-3.

Figure 5-3.  Azure Cloud Shell first login

Figure 5-2.  Cloud Shell advanced settings

Chapter 5 Playing with Azure IoT Hub and Our Application

67

Now it’s time to run the command to create an IoT Hub. Paste the

following command in the shell and press Enter. (Remember to change the

resource group name to the one you chose in the previous section.)

az iot hub create --name apressiothub --resource-group

apressbook --sku S1

The command will run for a few minutes and a JSON will appear in the

shell, with all the details of your IoT. You can also delete the IoT Hub with

the following command.

az iot hub delete --name apressiothub --resource-group

apressbook

�Using Azure Portal

Log in to Azure Portal(https://portal.azure.com/) and, from the Home

page, click the +Create a Resource button. Now search for the keywords

IoT Hub in the search box provided. Click the Create button on the next

page (see Figure 5-4).

Figure 5-4.  Creating IoT Hub

Chapter 5 Playing with Azure IoT Hub and Our Application

https://portal.azure.com/

68

This will redirect you to the page where you can create IoT Hub. In the

first step, you will be asked to select the subscription you have. You can

either create a new resource group here or you can select the existing one.

Next, select the region and give a valid name to your IoT Hub. (Keep in

mind that you should select the region closest to you.) Boom, you did it!

See Figure 5-5 for your reference.

You can either click the Review + Create button to get to the last step

or click the Next button. If you click the Next button, you will see an option

for selecting how your IoT Hub should be connected, whether using public

or private endpoints. See Figure 5-6.

Figure 5-5.  Creating IoT Hub, Step 1

Chapter 5 Playing with Azure IoT Hub and Our Application

69

In the next step, you will learn how to size and scale IoT Hub (see

Figure 5-7). You should be sure to select the right pricing and scale tier.

There are some significant differences between them. For example, the

standard tier enables all features, including bi-directional communication

capabilities, whereas the basic tier provides only a subset of features and

doesn’t include bi-directional communication. It is also worth mentioning

that, with the free tier, you can only send 8,000 messages per day and can

have 500 devices connected. Each Azure subscription can create only one

IoT Hub in the free tier. Table 5-1 shows the supported capabilities.

Figure 5-6.  Creating IoT Hub, Step 2 Networking

Chapter 5 Playing with Azure IoT Hub and Our Application

70

Table 5-1.  IoT Hub Tier Capabilities

Capability Basic Tier Free/Standard Tier

Device-to-cloud telemetry Yes Yes

Per-device identity Yes Yes

Message routing, message enrichments,

and event grid integration

Yes Yes

HTTP, AMQP, and MQTT protocols Yes Yes

Device provisioning service Yes Yes

Monitoring and diagnostics Yes Yes

Cloud-to-device messaging Yes

Device twins, module twins, and device

management

Yes

Device streams (preview) Yes

Azure IoT Edge Yes

IoT plug-and-play preview Yes

Chapter 5 Playing with Azure IoT Hub and Our Application

71

The IoT Hub Units is the number of messages allowed per unit, per

day. This depends on the selection of the pricing tier. With one S1 IoT Hub

unit, you can send 400,000 messages per day. If you wish to send more, you

can add an S1 IoT Hub unit, which will give you another 400,000 messages.

Keep in mind that the price will also increase as you choose the units. If

you choose free tier, this option will not be enabled.

The Azure Security Center is an extra layer of threat protection and

security. This is not available on the free tier.

The Device-to-Cloud-Partitions under the Advanced settings relate

the device-to-cloud message to the number of simultaneous readers of the

messages.

Figure 5-7.  Creating IoT Hub, Step 3 Size and Scale

Chapter 5 Playing with Azure IoT Hub and Our Application

72

Once you select the options you want, click the Next button, which will

give you an option to add tags, as shown in Figure 5-8.

Tags are the name/value pairs that categorize the resources and

resource groups and consolidate in billing. You can apply the same tags to

multiple resources and resource groups. Clicking the Next button will give

you a screen with the values you have selected. See Figure 5-9.

Figure 5-8.  Creating IoT Hub, Step 4 Tags

Chapter 5 Playing with Azure IoT Hub and Our Application

73

Figure 5-9.  Creating IoT Hub, Step 5 Review and Create

Chapter 5 Playing with Azure IoT Hub and Our Application

74

Now click the Create button, which will initialize your IoT Hub. After a

while, your resource will be ready for action.

�Registering a Device in the IoT Hub
A device must be registered in your IoT Hub before it can connect. To

create a device, go to your IoT Hub and then go to the IoT Devices section,

as shown in Figure 5-10.

Now click the +New button on the top, which will open a new page

where you can register a device. See Figure 5-11.

Figure 5-10.  The IoT Devices menu

Chapter 5 Playing with Azure IoT Hub and Our Application

75

Figure 5-11.  Create a device

Chapter 5 Playing with Azure IoT Hub and Our Application

76

Here, the Device ID is the name of your device. It’s used for device

authentication and access control. Clicking the Save button will create a

device and the page will be redirected to the device list.

�Connecting Raspberry Pi to Azure IoT Hub
To connect your Raspberry Pi to Azure IoT Hub, you must add a package

named Microsoft.Azure.Devices.Client to the solution. You can add

this by running the following command.

dotnet add package Microsoft.Azure.Devices.Client

If you check your .csproj file now, you should see that the package

reference entry is been added there.

<PackageReference Include="Microsoft.Azure.Devices.Client"

Version="1.27.0" />

You can also add an entry here if you don’t link to run the previous

command. It works both ways.

Let’s create a model class for our telemetry data now. We’ll call this

class DeviceData, but feel free to give it any name you wish. We will have

three properties in that class for now. Install the Newtonsoft.Json package

in your application so that you can easily serialize and deserialize your

data. Run the following command:

dotnet add package Newtonsoft.Json

Here is how your DeveiceData model class should look at this point.

using Newtonsoft.Json;

namespace raspberrypi.net.core.Models

{

 public class DeviceData

 {

Chapter 5 Playing with Azure IoT Hub and Our Application

77

 [JsonProperty(PropertyName="temperature")]

 public double Temperature { get; set; } = 0;

 [JsonProperty(PropertyName="messageid")]

 public int MessageId { get; set; } = 0;

 [JsonProperty(PropertyName="deviceid")]

 public string DeviceId {get;set;} = Program.DeviceId;

 }

}

Now let’s rewrite the program, as follows.

using System;

using System.Text;

using Iot.Device.CpuTemperature;

using System.Threading;

using System.Threading.Tasks;

using Microsoft.Azure.Devices.Client;

using Newtonsoft.Json;

using raspberrypi.net.core.Models;

namespace raspberrypi.net.core

{

 class Program

 {

 �private static CpuTemperature _rpiCpuTemp = new

CpuTemperature();

 private const string _deviceConnectionString = "";

 private static int _messageId = 0;

 �private static DeviceClient _deviceClient =

DeviceClient.CreateFromConnectionString(_

deviceConnectionString, TransportType.Mqtt);

 public const string DeviceId = "";

Chapter 5 Playing with Azure IoT Hub and Our Application

78

 static async Task Main(string[] args)

 {

 while (true)

 {

 if (_rpiCpuTemp.IsAvailable)

 {

 �await SendToIoTHub(_rpiCpuTemp.Temperature.

Celsius);

 �Console.WriteLine("The device data has been

sent");

 }

 Thread.Sleep(5000); // Sleep for 5 seconds

 }

 }

 private static async Task SendToIoTHub(double celsius)

 {

 �string jsonData = JsonConvert.SerializeObject(new

DeviceData()

 {

 MessageId = _messageId++,

 Temperature = celsius

 });

 �var messageToSend = new Message(Encoding.UTF8.

GetBytes(jsonData));

 �await _deviceClient.SendEventAsync(messageToSend).

ConfigureAwait(false);

 }

 }

}

Chapter 5 Playing with Azure IoT Hub and Our Application

79

The SentToIoTHub method is responsible for sending the Message

data to Azure IoT Hub by using the SendEventAsync function in the

DeviceClient. Note that this DeviceClient is part of the Microsoft.

Azure.Devices.Client namespace, so make sure to add it to the using

statements.

Now we just need to update the connection string and device ID from

IoT Hub. Go to your IoT Hub resource and click the IoT Devices menu

under the Explorers section. You will see your device listed on the page, as

shown in Figure 5-12.

Click the device name to see a page with all the information about that

device, as shown in Figure 5-13.

Figure 5-12.  IoT Devices list

Chapter 5 Playing with Azure IoT Hub and Our Application

80

From those properties, you need both the Primary Connection String

and the Device ID. Your connection string will look like this:

HostName={YourIoTHubName}.azure-devices.net;DeviceId={YourDevic

eId};SharedAccessKey={YourSharedAccessKey}

Now that you have updated the program with the connection string

and device ID, all you have to do is run the build task. Do you remember

how to do that? Just press F5 and make sure that you select the Rpi Publish

and Debug task.

The new program will be redeployed to Raspberry Pi, will attach the

debugger, and will run the application. If you still have the debugger, it will

hit any issues and you can see the values. If there is no debugger attached,

just double-click the left side of any line, See Figure 5-14.

Figure 5-13.  IoT Device properties

Chapter 5 Playing with Azure IoT Hub and Our Application

81

Figure 5-14.  Sending data to the IoT Hub Debug screen

�Monitoring the Device Data and IoT Hub
To monitor data communication, Microsoft introduced an amazing

extension called Azure IoT Tools. There are many things that you can do

with this extension. First, let’s install it. See Figure 5-15.

Once you install the extension, you have to restart your VSCode to load

it. You should see a page like Figure 5-16 open once you have done that.

Figure 5-15.  Install Azure IoT Tools

Chapter 5 Playing with Azure IoT Hub and Our Application

82

Click the Select IoT Hub button and log in with your account. You

will see all of your subscriptions listed. Now select the Azure subscription

where you created your IoT Hub, and then select IoT Hub. It is as simple as

that. You should see your IoT Hub device in the tool now. See Figure 5-17.

Figure 5-17.  IoT Hub Devices list

Figure 5-16.  Azure IoT Tools first page

Chapter 5 Playing with Azure IoT Hub and Our Application

83

You can also select the IoT Hub from the Azure IoT Hub menu, as

shown in Figure 5-18.

Figure 5-18.  Select IoT Hub

Chapter 5 Playing with Azure IoT Hub and Our Application

84

You can easily interact with the device using this tool. Some of the

options are given here:

•	 Send D2C messages to IoT Hub

•	 Send C2D messages to the device

•	 Start monitoring

For now, we can go ahead and start monitoring our device. What do

you think? To do that, you just right-click the device name and choose the

Start Monitoring Built-in Event Endpoint menu item (see Figure 5-19).

You should see the communication in the output window, as shown in

Figure 5-20.

Figure 5-19.  Azure IoT Hub Tool options

Chapter 5 Playing with Azure IoT Hub and Our Application

85

Figure 5-20.  IoT Hub device monitoring

�Adding Custom Event Message Properties
You can also add a custom event message property while you send the data

to the Azure IoT Hub. Let’s see how you do it. Update your SendToIoTHub

function as follows:

private static async Task SendToIoTHub(double tempCelsius)

 {

 �string jsonData = JsonConvert.SerializeObject(new

DeviceData()

 {

 MessageId = _messageId++,

 Temperature = tempCelsius

 });

 �var messageToSend = new Message(Encoding.UTF8.

GetBytes(jsonData));

 �messageToSend.Properties.Add("TemperatureAlert",

(tempCelsius > _temperatureThreshold) ? "true" :

"false");

 �await _deviceClient.SendEventAsync(messageToSend).

ConfigureAwait(false);

 }

Make sure to add a new variable called _temperatureThreshold.

private const double _temperatureThreshold = 40;

Chapter 5 Playing with Azure IoT Hub and Our Application

86

Now press F5 to see the output. You should see the JSON data, as

shown in Figure 5-21.

Wow, isn’t that cool?. I hope that you enjoyed playing with IoT Hub.

There are many things that we need to do with it in subsequent chapters.

�Summary
In this chapter, I hope you have learned the following:

•	 What Azure IoT Hub is?

•	 How to create Azure IoT Hub using the Azure Cloud

Shell?

•	 How to create Azure IoT Hub using Azure Portal?

•	 How to connect Azure IoT Hub from your .NET Core

application?

•	 How to monitor Azure IoT Hub communication using

Azure’s IoT tools?

Let’s keep playing with IoT Hub. I will see you in the next chapter.

Figure 5-21.  Temperature alert

Chapter 5 Playing with Azure IoT Hub and Our Application

87© Sibeesh Venu 2020
S. Venu, Asp.Net Core and Azure with Raspberry Pi 4,
https://doi.org/10.1007/978-1-4842-6443-0_6

CHAPTER 6

Finally, A Windows
Terminal That You
Can Customize
In the last few chapters, you worked with your application and the IoT hub.

In this chapter, I want to give you pro tip—using the Windows Terminal

command-line tool, which you can customize. Yeah, you heard me right.

In this chapter, I show how you can use and customize that tool. If you are

not interested in using this tool, feel free to skip this chapter.

�Using Windows Terminal
Windows Terminal is a new, fast, modern, efficient terminal application

for users of command-line tools and shells, like command-prompt,

PowerShell, and WSL. You can easily download the terminal from

Microsoft Store, as shown in Figure 6-1.

https://doi.org/10.1007/978-1-4842-6443-0_6#DOI

88

�Windows Terminal Key Features
Once you open Windows Terminal, you can see the fresh look of this new

command-line tool. It has an updated UI and many new features, some of

which we discuss next.

�Support for Multiple Tabs

The new terminal supports multiple tabs, each connected to a command-

line shell or app of your choice. See Figure 6-2.

Figure 6-1.  Windows Terminal install

Chapter 6 Finally, A Windows Terminal That You Can Customize

89

�Support for Emojis, Icons, and More

With the new terminal, you can display text characters, glyphs, and

symbols present on your windows, including emojis, powerline symbols,

icons, and more.

�Configuring Windows Terminal
The new terminal gives you the option to customize your terminal,

including:

•	 Multiple profiles for each shell/app/tools you use.

•	 Separate font styles, color themes, backgrounds, and

transparency levels for each profile.

The configuration is stored in a structured text file so that anyone can

easily edit it. To edit the settings file (called settings.json), just click the

Settings button, as shown in Figure 6-3.

Figure 6-2.  Windows Terminal’s multiple tabs

Chapter 6 Finally, A Windows Terminal That You Can Customize

90

The settings.json file will open in your default code editor.

You should see the profiles section with possible names Windows

PowerShell, Command Prompt, Ubuntu-20.04, or Azure Cloud Shell.

You can edit these profiles as you wish; for example, you could edit the

Ubuntu-20.04 profile as follows:

{

 "guid": "{07b52e3e-de2c-5db4-bd2d-ba144ed6c273}",

 "hidden": false,

 "name": "Ubuntu-20.04",

 "source": "Windows.Terminal.Wsl",

 "background": "#fff",

 �"startingDirectory":"\\\\wsl$\\Ubuntu-20.04\\

home\\sibeeshvenu",

 "colorScheme": "Campbell"

 }

Now if you open the Ubuntu-20.04 shell, you’ll see that all the settings

are updated. Note that the starting directory has changed as well.

Figure 6-3.  Windows Terminal settings

Chapter 6 Finally, A Windows Terminal That You Can Customize

91

�Windows Terminal Preview Version
There is also a preview version of Windows Terminal, planned to be

released in July of 2020. This version offers many other features. Let’s look

at them now.

�Open Folders in Windows Terminal
You can right-click any folder and select Open in Windows Terminal,

which will launch Windows Terminal with your default profile in the

directory you selected from File Explorer.

�Font Weight Support
The preview version supports font weight as a new profile setting. The

possible values of the fontWeight property are normal, thin, extra-light,

light, semi-light, medium, semi-bold, bold, extra-bold, black, extra-

black, or an integer corresponding to the numeric representation of the

OpenType font weight. You place the values in quotes, as follows:

"fontWeight": "normal"

�Support to Open a Profile as a Pane
If you want to open a profile as a pane in the current window, all you have

to do is press and hold the Alt key and then click the profile. This will open

the profile as a pane by using the auto-split feature. See Figure 6-4.

Chapter 6 Finally, A Windows Terminal That You Can Customize

92

�Change the Tab Color
To change the color of a tab, just right-click the tab and select Color,

which will open a color menu. Then you can select the color you wish. See

Figure 6-5.

Figure 6-4.  Windows Terminal’s auto-split pane

Figure 6-5.  Windows Terminal tab colors

Chapter 6 Finally, A Windows Terminal That You Can Customize

93

�Rename a Tab
There is also an option to rename a tab. To do that, just right-click the tab

and select Rename Tab. This will change your tab title to a textbox, where

you can rename the tab for that terminal session.

�Summary
Isn’t it cool that you can design your terminal? So, in this chapter, you

learned:

•	 What Windows Terminal is?

•	 How to install Windows Terminal?

•	 The key features of Windows Terminal.

•	 How to customize Windows Terminal?

Chapter 6 Finally, A Windows Terminal That You Can Customize

95© Sibeesh Venu 2020
S. Venu, Asp.Net Core and Azure with Raspberry Pi 4,
https://doi.org/10.1007/978-1-4842-6443-0_7

CHAPTER 7

Cloud to Device
Communication
In the last few chapters, we sent data from the device to the Azure IoT Hub

and monitored the data using Azure IoT Tools. Now it’s time to discuss

sending messages or data from the cloud to the device. You might need to

do this in the following scenarios:

•	 If the temperature is more than the threshold value,

you may need to make sure that the room temperature

is balanced. How do you that automatically? You can

send instructions from the cloud to the device to turn

on the fan and air conditioner.

•	 Imagine that you need to install a new module or firm

update, perhaps on millions of devices. It is impossible

to manually do this on each device. Instead, you can

send the instructions from the cloud to all the devices

so that each device can be updated.

•	 Imagine that your camera-integrated IoT device needs

to send a photo of the room when some conditions are

met. To do this, you simply send the instructions from

the Hub and the device will listen to it.

https://doi.org/10.1007/978-1-4842-6443-0_7#DOI

96

Now that you know why it’s useful, let’s see how to send data from the

cloud to the device.

�Cloud-to-Device Communication Options
The IoT Hub provides three ways to communicate to the device from the

cloud:

•	 Direct methods.

•	 Twin’s desired properties.

•	 Cloud-to-device messages.

Let’s go through each of these methods.

�Direct Methods
With these methods, you invoke direct functions on the device from the

cloud. You can use this approach if you require an immediate confirmation

of the result. A few of the examples are given here.

•	 To turn on lights or fans.

•	 To give an alert or a warning to the user.

•	 To take a photo of an intruder.

•	 To turn on a motor when the water level of a tank is low.

Direct methods represent a request-reply interaction with the

device, similar to an HTTP call in that they succeed or fail immediately.

To configure the direct method, the first thing we should do is create a

handler for the method.

Chapter 7 Cloud to Device Communication

97

Rewrite the Main method as follows.

static async Task Main(string[] args)

 {

 �_deviceClient = DeviceClient.

CreateFromConnectionString(_deviceConnectionString,

TransportType.Mqtt);

 // Create a handler for the direct method call

 �_deviceClient.SetMethodHandlerAsync(methodName,

TurnOnLight, null).Wait();

 while (true)

 {

 if (_rpiCpuTemp.IsAvailable)

 {

 �await SendToIoTHub(_rpiCpuTemp.Temperature.

Celsius);

 �Console.WriteLine("The device data has been

sent");

 }

 Thread.Sleep(5000); // Sleep for 5 seconds

 }

 }

Here, the method name is TurnOnLight.

private const string methodName = "TurnOnLight";

You can see that we are using the SetMethodHandlerAsync method to

create the handler. Now let’s write the custom handler as follows:

private static Task<MethodResponse> TurnOnLight(MethodRequest

methodRequest, object userContext)

 {

 �Console.WriteLine("Here is the call from cloud to

turn of the light!");

Chapter 7 Cloud to Device Communication

98

 �var result = "{\"result\":\"Executed direct method:

" + methodRequest.Name + "\"}";

 r�eturn Task.FromResult(new MethodResponse(Encoding.

UTF8.GetBytes(result), 200));

 }

The idea here is that the hander we registered will invoke this task

method. As we are using the IoT Hub Tool already, there is an easy way to

call this direct method. Just right-click the device name and click the

Invoke Device Direct Method menu option, as shown in Figure 7-1.

This will give you a textbox where you can enter the method name

and payload (optional). Don’t forget to enter the same method name

that you used in the handler. Once you give that information, press Enter.

The TurnOnLight method will be called and you will get output similar to

what’s shown in Figure 7-2.

Figure 7-1.  Invoking the device direct method

Chapter 7 Cloud to Device Communication

99

You can also create another application, where you trigger this action

instead of using the Azure IoT Tool.

�Creating a Backend Application To Call the Direct
Method

Let’s create a new folder, called raspberrypi.net.core.backend, and run

the following command to create a new console application. See Figure 7-3.

dotnet new console --langVersion=latest && dotnet add package

Microsoft.Azure.Devices

Figure 7-2.  Executed direct method

Figure 7-3.  Creating a backend solution

Chapter 7 Cloud to Device Communication

100

Once the application is created, open it in a separate VSCode. We will

rewrite the Program.cs file as follows.

using System;

using Microsoft.Azure.Devices;

using System.Threading.Tasks;

namespace raspberrypi.net.core.backend

{

 class Program

 {

 private static ServiceClient _serviceClient;

 private const string _deviceId = "rpiofficeroom";

 private const string methodName = "TurnOnLight";

 �private const string _deviceConnectionString = "HostName

=apressiothub.azure-devices.net;SharedAccessKeyName=

service;SharedAccessKey=i2uJ9US+JaJQMDAGcwIkTYJ95JWDC7PT

0O4zyCAW8dQ=";

 static async Task Main(string[] args)

 {

 _�serviceClient = ServiceClient.CreateFrom

ConnectionString(_deviceConnectionString);

 await InvokeDirectMethod(methodName);

 Console.WriteLine("Hello World!");

 }

 �private static async Task InvokeDirectMethod(string

methodName)

 {

 var invocation = new CloudToDeviceMethod(methodName)

 {

 ResponseTimeout = TimeSpan.FromSeconds(45)

 };

Chapter 7 Cloud to Device Communication

101

 invocation.SetPayloadJson("5");

 �var response = await _serviceClient.

InvokeDeviceMethodAsync(_deviceId, invocation);

 Console.WriteLine(response.GetPayloadAsJson());

 }

 }

}

Note that the connection string we are using here is the service

connection string, not the device connection string. To get the service

connection string, go to your IoT Hub and then choose the Shared Access

Policies menu option. See Figure 7-4.

All we are doing is creating a new service client from the IoT Hub

service connection string and then invoking the device method we

configured. Now, let’s debug both of the applications. Remember to run

the first application (raspberrypi.net.core) in WSL.

Once we run the first application, we can put the debugger on the

TurnOnLight method. Then we run our second application (raspberrypi.

net.core.backend).

Figure 7-4.  Service connection string

Chapter 7 Cloud to Device Communication

102

This second application will call the direct method; the first

application will trigger the method via the handler and then return the

response. The second application receives the response and shows it in the

console. As you can see in Figure 7-5, the payload is also being received in

the first application.

Figure 7-6 shows the console of the second application.

Figure 7-5.  Trigger Direct method debug

Chapter 7 Cloud to Device Communication

103

Figure 7-6.  Response from the direct method call

Chapter 7 Cloud to Device Communication

104

�Twin’s Desired Properties
This type of cloud-to-device communication enables long-running

commands to put the device into a certain desired state. For example,

to change the send telemetry interval. The device twins are a JSON

document where the device information, such as metadata, configuration,

and conditions, is saved. The Azure IoT Hub maintains a device twin for

each device that you connect to IoT Hub. As we are using Azure IoT Tools

already, we can easily see this file within our VSCode. Right-click your

device name and select Edit Device Twin, as shown in Figure 7-7.

Figure 7-7.  Edit device twin

Chapter 7 Cloud to Device Communication

105

A new JSON file with the name azure-iot-device-twin.json will be

loaded and the contents of that file will look as follows:

{

 "deviceId": "rpiofficeroom",

 "etag": "AAAAAAAAAAE=",

 "deviceEtag": "NzgyOTM1NDc2",

 "status": "enabled",

 "statusUpdateTime": "0001-01-01T00:00:00Z",

 "connectionState": "Disconnected",

 "lastActivityTime": "2020-07-17T12:36:24.4328341Z",

 "cloudToDeviceMessageCount": 0,

 "authenticationType": "sas",

 "x509Thumbprint": {

 "primaryThumbprint": null,

 "secondaryThumbprint": null

 },

 "version": 2,

 "properties": {

 "desired": {

 "$metadata": {

 "$lastUpdated": "2020-07-14T10:47:29.8590777Z"

 },

 "$version": 1

 },

 "reported": {

 "$metadata": {

 "$lastUpdated": "2020-07-14T10:47:29.8590777Z"

 },

 "$version": 1

 }

 },

Chapter 7 Cloud to Device Communication

106

 "capabilities": {

 "iotEdge": false

 },

 "tags": {}

}

You can use device twins to:

•	 Store device-specific locations, for example, the

location of your Raspberry Pi.

•	 Report current state information about the device.

•	 Query your device configuration, state, or metadata.

•	 Synchronize the state of long-running workflows

between the backend app and the device app. For

example, when the backend app performs a firmware

update to be installed on the device and the device app

reports the stages of the update process.

You can also see this device twin JSON data in your Azure portal. Click

the Query Explorer, and then select Device Twin from the Collections

drop-down. Then click the Run button. Note that the default query is:

SELECT * FROM c

Figure 7-8 is for your reference.

Chapter 7 Cloud to Device Communication

107

Figure 7-8.  Device twin in the Azure Portal

Now let’s discuss some of the properties of the device twins.

�Reported Property

The reported property can be used in such scenarios as when the solution

backend needs to know the last known value of a property. Here’s an

example of the reported property. Let’s have a look.

"reported": {

 "telemetryConfig": {

 "sendFrequency": "5m",

 "status": "success"

 },

 "batteryLevel": 55,

 "$metadata" : {...},

 "$version": 4

 }

Here, the batteryLevel property is the last battery level reported by

the device app.

Chapter 7 Cloud to Device Communication

108

�Desired Property

Here is an example of the desired property:

"desired": {

 "telemetryConfig": {

 "sendFrequency": "5m"

 },

 "$metadata" : {...},

 "$version": 1

 }

The backend solution sets the desired property with the desired

configuration values so that the device application can read it. For

example, in the previous codeblock, telemetryConfig is the desired

property. If the device is already connected, the changes will take effect

immediately, if not, at the first reconnect. The device app can report the

status in the reported property, as in the following codeblock.

"reported": {

 "telemetryConfig": {

 "sendFrequency": "5m",

 "status": "success"

 },

 "batteryLevel": 55,

 "$metadata" : {...},

 "$version": 4

 }

Check the status property. I hope this is enough of an introduction

to device twins. Let’s see them in action. We will be updating the backend

application that we created earlier, but before we do that, let’s get a new

connection string from the IoT Hub. Recall that the connection string we

used earlier only has the Service Connect permission.

Chapter 7 Cloud to Device Communication

109

To work with this, we need a connection string that has both Service

Connect and Registry Read connections. To change this, go to the Shared

Access Policy section of your IoT Hub and click the +Add button. See

Figure 7-9.

Once you are done, click the Create button. This will create a new

policy. Click the policy and get the primary connection string, as shown in

Figure 7-10.

Figure 7-9.  Service connect and registry read permissions

Chapter 7 Cloud to Device Communication

110

Figure 7-10.  The connection string with service connect and registry
read permissions

Chapter 7 Cloud to Device Communication

111

Replace the old connection string with the new one in the backend

application. Note that you can also create a new console application with

the new connection string, if you don’t want to update this connection

string and mess with the old application.

Now add a new property to the Registry Manager and initialize it.

private static RegistryManager _registryManager;

_registryManager = RegistryManager.CreateFromConnectionString

(_deviceConnectionString);

Let’s now create a new function with the properties we need to update.

private static async Task UpdateTwin()

 {

 �var twin = await _registryManager.GetTwinAsync

(_deviceId);

 var toUpdate = @"{

 tags:{

 location: {

 region: 'DE'

 }

 },

 properties: {

 desired: {

 telemetryConfig: {

 sendFrequency: '5m'

 },

 $metadata: {

 �$lastUpdated:

'2020-07-14T10:47:29.8590777Z'

 },

 $version: 1

 }

Chapter 7 Cloud to Device Communication

112

 }

 }";

 �await _registryManager.UpdateTwinAsync(_deviceId,

toUpdate, twin.ETag);

 }

As you can see in the codeblock, we are updating the location tag and

the desired properties with custom configuration values. All we have to

do next with our backend application is call this method from the Main

method. This is how the Main method should look now.

static async Task Main(string[] args)

 {

 �_serviceClient = ServiceClient.CreateFrom

ConnectionString(_deviceConnectionString);

 �_registryManager = RegistryManager.CreateFrom

ConnectionString(_deviceConnectionString);

 await UpdateTwin();

 await InvokeDirectMethod(methodName);

 Console.WriteLine("Hello World!");

 }

As we have already set up our backend, it’s time to make some changes

to the device application. Open the application and add a desired property

change callback to the Main function, as follows.

// Set desired property update callback

 �await _deviceClient.SetDesiredPropertyUpdateCall

backAsync(OnDesiredPropertyChangedAsync, null).

ConfigureAwait(false);

Now let’s write the callback function.

Chapter 7 Cloud to Device Communication

113

private static async Task OnDesiredPropertyChangedAsync(TwinCol

lection desiredProperties, object userContext)

 {

 �Console.WriteLine($"New desired property is

{desiredProperties.ToJson()}");

 TwinCollection reportedProperties, telemetryConfig;

 reportedProperties = new TwinCollection();

 telemetryConfig = new TwinCollection();

 telemetryConfig["status"] = "success";

 �reportedProperties["telemetryConfig"] =

telemetryConfig;

 �await _deviceClient.UpdateReportedPropertiesAsync

(reportedProperties).ConfigureAwait(false);

 }

In the callback function, we are updating the reported property

as an acknowledgment and passing the status value as success. The

UpdateReportedPropertiesAsync function will update the properties.

Go back to your main method and write code to set the initial value of

the reported property sendFrequency under telemetryConfig.

var twin = await _deviceClient.GetTwinAsync();

 Console.WriteLine($"Initial Twin: {twin.ToJson()}");

 TwinCollection reportedProperties, telemetryConfig;

 reportedProperties = new TwinCollection();

 telemetryConfig = new TwinCollection();

 telemetryConfig["sendFrequency"] = "5m";

 �reportedProperties["telemetryConfig"] =

telemetryConfig;

Chapter 7 Cloud to Device Communication

114

 �await _deviceClient.UpdateReportedPropertiesAsync

(reportedProperties).ConfigureAwait(false);

Console.WriteLine("Waiting 30 seconds for IoT Hub Twin

updates...");

 await Task.Delay(3 * 1000);

Here, sendFrequency is a property of the telemetryConfig twin

collection. Here is the full code of the Program.cs class:

using System;

using System.Text;

using Iot.Device.CpuTemperature;

using System.Threading;

using System.Threading.Tasks;

using Microsoft.Azure.Devices.Client;

using Newtonsoft.Json;

using raspberrypi.net.core.Models;

using Microsoft.Azure.Devices.Shared;

namespace raspberrypi.net.core

{

 class Program

 {

 �private static CpuTemperature _rpiCpuTemp = new

CpuTemperature();

 �private const string _deviceConnectionString =

"HostName=apressiothub.azure-devices.net;

DeviceId=rpiofficeroom;SharedAccessKey=Zz4OyJO6odR5aLu6

x9tzSpE8sUy3vBEfQThsRipN2WA=";

 private static int _messageId = 0;

 private static DeviceClient _deviceClient;

 private const double _temperatureThreshold = 40;

 public const string DeviceId = "rpiofficeroom";

 private const string methodName = "TurnOnLight";

Chapter 7 Cloud to Device Communication

115

 static async Task Main(string[] args)

 {

 �_deviceClient = DeviceClient.

CreateFromConnectionString(_deviceConnectionString,

TransportType.Mqtt);

 // Create a handler for the direct method call

 �_deviceClient.SetMethodHandlerAsync(methodName,

TurnOnLight, null).Wait();

 // Set desired property update callback

 �await _deviceClient.SetDesiredPropertyUpdateCall

backAsync(OnDesiredPropertyChangedAsync, null).

ConfigureAwait(false);

 var twin = await _deviceClient.GetTwinAsync();

 Console.WriteLine($"Initial Twin: {twin.ToJson()}");

 TwinCollection reportedProperties, telemetryConfig;

 reportedProperties = new TwinCollection();

 telemetryConfig = new TwinCollection();

 telemetryConfig["sendFrequency"] = "5m";

 �reportedProperties["telemetryConfig"] =

telemetryConfig;

 �await _deviceClient.UpdateReportedPropertiesAsync

(reportedProperties).ConfigureAwait(false);

 �Console.WriteLine("Waiting 30 seconds for IoT Hub

Twin updates...");

 await Task.Delay(3 * 1000);

 while (true)

 {

 if (_rpiCpuTemp.IsAvailable)

 {

Chapter 7 Cloud to Device Communication

116

 �await SendToIoTHub(_rpiCpuTemp.Temperature.

Celsius);

 �Console.WriteLine("The device data has been

sent");

 }

 Thread.Sleep(5000); // Sleep for 5 seconds

 }

 }

 �private static async Task OnDesiredPropertyChangedAsync

(TwinCollection desiredProperties, object userContext)

 {

 �Console.WriteLine($"New desired property is

{desiredProperties.ToJson()}");

 TwinCollection reportedProperties, telemetryConfig;

 reportedProperties = new TwinCollection();

 telemetryConfig = new TwinCollection();

 telemetryConfig["status"] = "success";

 �reportedProperties["telemetryConfig"] =

telemetryConfig;

 �await _deviceClient.UpdateReportedPropertiesAsync

(reportedProperties).ConfigureAwait(false);

 }

 �private static Task<MethodResponse>

TurnOnLight(MethodRequest methodRequest, object

userContext)

 {

 �Console.WriteLine("Here is the call from cloud to

turn of the light!");

 �var result = "{\"result\":\"Executed direct method:

" + methodRequest.Name + "\"}";

Chapter 7 Cloud to Device Communication

117

 �return Task.FromResult(new MethodResponse(Encoding.

UTF8.GetBytes(result), 200));

 }

 private static async Task SendToIoTHub(double tempCelsius)

 {

 �string jsonData = JsonConvert.SerializeObject(new

DeviceData()

 {

 MessageId = _messageId++,

 Temperature = tempCelsius

 });

 �var messageToSend = new Message(Encoding.UTF8.

GetBytes(jsonData));

 �messageToSend.Properties.Add("TemperatureAlert",

(tempCelsius > _temperatureThreshold) ? "true" :

"false");

 �await _deviceClient.SendEventAsync(messageToSend).

ConfigureAwait(false);

 }

 }

}

Now put a debugger in the OnDesiredPropertyChangedAsync function

and run the device application. Once it is running, run your backend

application. The backend application will change the properties and the

debugger will be called in the callback function. See Figure 7-11.

Chapter 7 Cloud to Device Communication

118

As you can see in the debugger window, we passed these values from

the backend application. Now, from the Azure IoT Tools, right-click the

device name and select the Edit Device Twin option. Your azure-iot-

device-twin.json file should now look like this:

{

 "deviceId": "rpiofficeroom",

 "etag": "AAAAAAAAAAY=",

 "deviceEtag": "NzgyOTM1NDc2",

 "status": "enabled",

 "statusUpdateTime": "0001-01-01T00:00:00Z",

 "connectionState": "Disconnected",

 "lastActivityTime": "2020-07-19T12:12:02.2900013Z",

 "cloudToDeviceMessageCount": 0,

 "authenticationType": "sas",

 "x509Thumbprint": {

 "primaryThumbprint": null,

 "secondaryThumbprint": null

 },

 "version": 11,

 "tags": {

 "location": {

 "region": "DE"

Figure 7-11.  OnDesiredPropertyChangedAsync method debugger

Chapter 7 Cloud to Device Communication

119

 }

 },

 "properties": {

 "desired": {

 "telemetryConfig": {

 "sendFrequency": "5m"

 },

 "$metadata": {

 "$lastUpdated": "2020-07-19T12:10:44.6185564Z",

 "$lastUpdatedVersion": 4,

 "telemetryConfig": {

 �"$lastUpdated": "2020-07-19T12:10:

44.6185564Z",

 "$lastUpdatedVersion": 4,

 "sendFrequency": {

 �"$lastUpdated": "2020-07-19T12:10:44.61

85564Z",

 "$lastUpdatedVersion": 4

 }

 }

 },

 "$version": 4

 },

 "reported": {

 "telemetryConfig": {

 "sendFrequency": "5m",

 "status": "success"

 },

 "$metadata": {

 "$lastUpdated": "2020-07-19T12:12:02.2743455Z",

 "telemetryConfig": {

Chapter 7 Cloud to Device Communication

120

 �"$lastUpdated": "2020-07-19T12:12:02.

2743455Z",

 "sendFrequency": {

 �"$lastUpdated":

"2020-07-19T12:07:31.3467328Z"

 },

 "status": {

 �"$lastUpdated":

"2020-07-19T12:12:02.2743455Z"

 }

 }

 },

 "$version": 5

 }

 },

 "capabilities": {

 "iotEdge": false

 }

}

Note the status property in the reported property. Wow, that was

amazing, right? Let’s move on to the next session.

�Cloud-to-Device Messages
This approach is used to send a notification to the device, and it is one-way

communication. Note that most of these features are available only in the

standard tier of IoT Hub.

To send a cloud-to-device message, we use a service-facing endpoint

/messages/devicebound. The device will receive the message through

a device-specific endpoint, called /devices/{deviceid}/messages/

devicebound. Note that each device can hold a maximum of 50 cloud-to-

device messages.

Chapter 7 Cloud to Device Communication

121

The devices can reject these kinds of messages from the cloud; in this

case, IoT Hub will set this to the dead lettered state. The devices can also

abandon these messages. IoT Hub will then put the message back in the

queue, with the Enqueued state.

Enough for the introduction, let’s rewrite the device application and

the backend application. Here are the steps:

	 1.	 The backend application sends the cloud-to-device

message.

	 2.	 The device application receives the cloud message.

	 3.	 The device application sends the delivery feedback.

	 4.	 The backend application receives the delivery

feedback.

�Sending the Cloud-to-Device Message

Let’s create a function called SendCloudToDeviceMessageAsync() in our

backend application to send the cloud message to the device.

private static async Task SendCloudToDeviceMessageAsync()

 {

 �var message = new Message(Encoding.ASCII.

GetBytes("This is a message from cloud"));

message.Ack = DeliveryAcknowledgement.Full; �// This is to

request the

feedback

 await _serviceClient.SendAsync(_deviceId, message);

 }

Here, the line message.Ack = DeliveryAcknowledgement.Full;

requests feedback of the delivery of our cloud-to-device message. Don’t

forget to call this function in your main function. This is how your main

function will look:

Chapter 7 Cloud to Device Communication

122

static async Task Main(string[] args)

 {

 �_serviceClient = ServiceClient.

CreateFromConnectionString(_deviceConnectionString);

 �_registryManager = RegistryManager.

CreateFromConnectionString(_deviceConnectionString);

 await SendCloudToDeviceMessageAsync();

 await UpdateTwin();

 await InvokeDirectMethod(methodName);

 Console.WriteLine("Hello World!");

 }

�Receiving the Cloud-to-Device Message and Sending
Feedback

The backend is now capable of sending the cloud-to-device message,

so let’s create a new function in the device application to receive this

message.

private static async Task ReceiveCloudToDeviceMessageAsync()

 {

 while (true)

 {

 �var cloudMessage = await _deviceClient.

ReceiveAsync();

 if (cloudMessage == null) continue;

 �Console.WriteLine($"The received message is:

{Encoding.ASCII.GetString(cloudMessage.

GetBytes())}");

 �await _deviceClient.

CompleteAsync(cloudMessage); // Send feedback

 }

 }

Chapter 7 Cloud to Device Communication

123

Don’t forget to call this method in the main method. Let’s comment out

all the other code, so this is how the new main method looks.

static async Task Main(string[] args)

 {

 �_deviceClient = DeviceClient.

CreateFromConnectionString(_deviceConnectionString,

TransportType.Mqtt);

 // // Create a handler for the direct method call

 �// _deviceClient.SetMethodHandlerAsync(methodName,

TurnOnLight, null).Wait();

 // // Set desired property update callback

 �// await _deviceClient.SetDesiredPropertyUpdateCa

llbackAsync(OnDesiredPropertyChangedAsync, null).

ConfigureAwait(false);

 // var twin = await _deviceClient.GetTwinAsync();

 �// Console.WriteLine($"Initial Twin: {twin.

ToJson()}");

 �// TwinCollection reportedProperties,

telemetryConfig;

 // reportedProperties = new TwinCollection();

 // telemetryConfig = new TwinCollection();

 // telemetryConfig["sendFrequency"] = "5m";

 �// reportedProperties["telemetryConfig"] =

telemetryConfig;

 �// await _deviceClient.UpdateReportedPropertiesAsyn

c(reportedProperties).ConfigureAwait(false);

 �// Console.WriteLine("Waiting 30 seconds for IoT

Hub Twin updates...");

 // await Task.Delay(3 * 1000);

Chapter 7 Cloud to Device Communication

124

 // while (true)

 // {

 // if (_rpiCpuTemp.IsAvailable)

 // {

 // �await SendToIoTHub(_rpiCpuTemp.

Temperature.Celsius);

 // �Console.WriteLine("The device data has

been sent");

 // }

 // Thread.Sleep(5000); // Sleep for 5 seconds

 // }

 �await ReceiveCloudToDeviceMessageAsync();

// Cloud to device receiver

 }

The ReceiveAsync() function returns null after a timeout period.

When the app receives null, it should continue to wait for new messages.

That is why we added a condition to check whether cloudMessage is null.

The CompleteAsync() function notifies IoT Hub that the message has

been processed and can be safely removed.

�Receiving Feedback from the Device

We have seen how to send cloud-to-device message feedback from the

device, so let’s learn how to receive that feedback in the backend application.

The following ReceiveDeliveryFeedback() function does that job.

private static async Task ReceiveDeliveryFeedback()

 {

 �var feedbackReceiver = _serviceClient.

GetFeedbackReceiver();

Chapter 7 Cloud to Device Communication

125

 while (true)

 {

 �var feedback = await feedbackReceiver.

ReceiveAsync();

 if (feedback == null) continue;

 �Console.WriteLine($"The feedback status is:

{string.Join(",", feedback.Records.Select(s =>

s.StatusCode))}");

 await feedbackReceiver.CompleteAsync(feedback);

 }

 }

Don’t forget to add this function to the main method.

�Demo Application
Now let’s run our device application and backend application. If

everything goes well, you should see the output shown in Figures 7-12 and

7-13. Figure 7-12 is from the device application and Figure 7-13 is from the

backend application.

Chapter 7 Cloud to Device Communication

126

Figure 7-12.  Cloud-to-device message

Chapter 7 Cloud to Device Communication

127

�Summary
I hope you were able to follow along with this chapter hands-on. In this

chapter, you learned:

•	 The ways you can communicate with the device from

the cloud.

•	 What the direct method is and how to implement it?

Figure 7-13.  Cloud-to-device message feedback

Chapter 7 Cloud to Device Communication

128

•	 What device twins are and how to implement

them?

•	 What a cloud-to-device message is and how to

implement it?

Now let’s move on to the next chapter.

Chapter 7 Cloud to Device Communication

129© Sibeesh Venu 2020
S. Venu, Asp.Net Core and Azure with Raspberry Pi 4,
https://doi.org/10.1007/978-1-4842-6443-0_8

CHAPTER 8

IoT Edge
In the last few chapters, you learned about bi-directional communication

between the device and the IoT Hub. You also saw the actions in the demo.

For a full understanding of IoT Hub, we need to also discuss IoT Edge.

Therefore, in this chapter, we cover the following topics:

•	 What is IoT Edge?

•	 Why is it so popular?

•	 How does it work?

What do you think? Feeling excited? Let’s start.

�IoT Edge
The Azure IoT Edge is a managed service built on Azure IoT Hub. Usually,

when we send the data to the cloud, the workloads happen in the cloud.

But with the help of IoT Edge, we can move this workload to our device, via

standard containers. These workloads can be artificial intelligence, your

business logic, or any other Azure or third-party services. This way, the

communication with the device and cloud is limited and the device can

react more quickly to the data or to changes.

https://doi.org/10.1007/978-1-4842-6443-0_8#DOI

130

�IoT Edge Runtime
The IoT Edge runtime is a collection of programs. These programs turn a

device into an IoT Edge device. In short, the IoT Edge runtime components

enable the IoT Edge devices to receive code to run at the edge and

communicate the results.

�IoT Edge Modules

The IoT Edge allows us to deploy and manage business logic on the edge

in the form of modules. These modules are the smallest units managed

by IoT Edge. They can contain any Azure services (such as Azure stream

analytics), third-party services, or your code. Here are the elements of a

module:

•	 A module image is a package containing the software.

•	 A module instance is the unit of computation running

the module image on the IoT Edge; it is started by the

IoT Edge runtime.

•	 A module identity is a piece of information stored in IoT

Hub; it’s associated with each module instance. This

piece of information includes the security credentials.

•	 A module twin is a JSON document stored in IoT Hub.

It contains the state information for a module instance.

This can contain metadata, configurations, and

conditions.

Module images exist on the cloud, and they can be updated, changed,

and deployed in different solutions. The module images must handle only

a single purpose. For example, don’t create a module with the capability of

AI and application insights. A new instance of the module will be created

whenever a new module image is deployed to a device and started by the

IoT Edge runtime.

Chapter 8 IoT Edge

131

Each time a module instance is created by the IoT Edge runtime,

it gets a new corresponding module identity. This identity depends on

the identity of the device and the module name. For example, if your

module name is Logger and you deploy it on the RpiOfficeRoom device,

the corresponding module identity will be /devices/RpiOfficeRoom/

modules/Logger.

Each module instance will have its corresponding module twin that we

can use to configure the module instance. The module twin is also a JSON

document, just like the device twin, and it stores the module information

and its configuration.

�Capabilities of IoT Edge Runtime

Here are the responsibilities of the IoT Edge runtime:

•	 Install and update the workload on the device.

•	 Maintain Azure IoT Edge security standards on the

device.

•	 Ensure that the IoT Edge modules are always running.

•	 Report module health to the cloud for remote

monitoring.

•	 Manage communication between downstream devices

and IoT Edge devices.

•	 Manage communication between modules on the IoT

Edge device.

•	 Manage communication between the IoT Edge device

and the cloud.

Chapter 8 IoT Edge

132

�Creating an IoT Edge Device
The IoT Edge allows you to manage code on your device remotely. This

makes it easier for you to send more of your workload to the edge. To start,

we need an IoT Hub, which we already have. We need to create an IoT

Edge device. As this device behaves and is managed differently, we need to

create this device differently. Go to your IoT Hub in the Azure Portal and

click the IoT Edge section. Then click + Add an IoT Edge Device, as shown

in Figure 8-1.

The create screen is the same one as with a normal IoT device, as

shown in Figure 8-2.

Figure 8-1.  Adding an IoT Edge device

Chapter 8 IoT Edge

133

Figure 8-2.  Creating an IoT Edge device

Chapter 8 IoT Edge

134

The device will be listed in the IoT Edge device list. Click that list to get

the connection string. See Figure 8-3.

As you can see in Figure 8-3, the connection string lists the IoT Hub

name, device ID, and the shared access key to do the authentication.

�Installing IoT Edge Runtime on Linux
Systems
Since we are using Raspberry Pi, we need to install the IoT Edge runtime.

Use the following command to register the Microsoft key and the software

repository feed before you install the container runtime. SSH to your

Raspberry Pi and run the following command:

curl https://packages.microsoft.com/config/debian/stretch/

multiarch/prod.list > ./microsoft-prod.list

Figure 8-3.  IoT Edge device connection string

Chapter 8 IoT Edge

135

Now copy ./microsoft-prod.list to /etc/apt/sources.list.d/ by

running the following command:

sudo cp ./microsoft-prod.list /etc/apt/sources.list.d/

Now install the Microsoft GPG public key:

curl https://packages.microsoft.com/keys/microsoft.asc |

gpg --dearmor > microsoft.gpg

sudo cp ./microsoft.gpg /etc/apt/trusted.gpg.d/

Once that is done, run sudo apt-get update. Figure 8-4 shows the

command-line output.

All the perquisites to install the container runtime are ready, so let’s

install the Moby engine (mobyproject.org). It is worth it to mention that

the Moby engine is the only container engine officially supported by Azure

IoT Edge. Run the following command to install the moby-engine.

sudo apt-get install moby-engine

Now we can install the IoT Edge Security Daemon. The IoT Edge

Security Daemon provides and maintains the security standards on the

Edge device. It starts on every boot and bootstraps the device by starting

the rest of the IoT Edge runtime.

Figure 8-4.  IoT Edge device prerequisites

Chapter 8 IoT Edge

136

Update the package lists on your device as follows:

sudo apt-get update

You can check which versions of IoT Edge are available by running the

following command.

apt list -a iotedge

You should get a list of available versions, as shown in Figure 8-5.

If you want to install a specific version of the security daemon, you

can mention that in the command along, with the libiothsm-std package

version.

sudo apt-get install iotedge=1.0.9* libiothsm-std=1.0.9*

The sudo apt-get install iotedge command will install the latest

version of both security daemon and libiothsm-std.

sudo apt-get install iotedge

Once IoT Edge is installed at /etc/iotedge/, the command window

will show you a message about updating the configuration file, as shown in

Figure 8-6.

Figure 8-5.  IoT Edge available versions

Chapter 8 IoT Edge

137

This configuration file is available at /etc/iotedge/. This is the file

we can use to provision the device. To see the contents of this file, run the

following command.

sudo nano /etc/iotedge/config.yaml

There are two ways you can provision your device:

•	 Manually

•	 Automatically

As we have only one device, we will use manual provisioning.

Automatic provisioning can be done using the Device Provisioning Service,

which will automatically provision your devices. Figure 8-7 shows how

your configuration file looks.

Figure 8-6.  Install IoT Edge

Chapter 8 IoT Edge

138

This configuration file is a .yml file, so spacing and indentation are

very important. Make sure you uncomment the manual provisioning

configuration and comment out the other provisioning sections. See

Figure 8-8.

Figure 8-7.  IoT Edge configuration file

Chapter 8 IoT Edge

139

Figure 8-8.  IoT Edge manual provisioning

Chapter 8 IoT Edge

140

You need to update the value of device_connection_string with your

IoT Edge device connection string from the Azure Portal.

Manual provisioning configuration

provisioning:

 source: "manual"

 �device_connection_string: "<ADD DEVICE CONNECTION STRING

HERE>"

Once you update it with the connection string, just save the file and

close it (Ctrl+X, Type Y, and then press Enter).

Now restart the daemon by running the following command.

sudo systemctl restart iotedge

If you have successfully finished the provisioning, you can check the

status of your IoT Edge daemon by running the following command.

systemctl status iotedge

If everything goes well, you should see the output in Figure 8-9.

Figure 8-9.  IoT Edge status

Chapter 8 IoT Edge

141

It is relevant to mention that you can always check the daemon logs by

running this command:

journalctl -u iotedge --no-pager --no-full

You can also troubleshoot your IoT Edge device by running the check

command. It runs a collection of configuration and connectivity tests.

sudo iotedge check

The previous command will check both configuration and connectivity

checks. Some of them are shown in Figures 8-10 and 8-11.

Figure 8-10.  IoT Edge configuration check

Figure 8-11.  IoT Edge connectivity check

Chapter 8 IoT Edge

142

If you ever want to see all the modules on your IoT Edge device, you

can use the list command:

sudo iotedge list

Figure 8-12 shows the modules list.

As you can see, only one module is running at this time, which is

edgeAgent. But no worries, there will be other modules once you do your

first deployment.

�Deploying a Module to IoT Edge Device
Now that you have set up your IoT Edge device, it’s time to deploy some

modules to it from the cloud. Are you ready? See Figure 8-13.

Figure 8-12.  IoT Edge modules list

Figure 8-13.  IoT Edge deploy module

Chapter 8 IoT Edge

143

As discussed, the modules are executable packages implemented

as containers. Log in to your Azure Portal and go to the IoT Hub that

you created. From the menu on the left pane, under Automatic Device

Management, select IoT Edge, and then click the device that you created.

See Figure 8-14.

On the next screen, click the Set Modules button, as shown in

Figure 8-15.

Figure 8-14.  IoT Edge automatic deploy module

Chapter 8 IoT Edge

144

There are two ways you can deploy a module to your IoT Edge device:

•	 Using the Container Registry (see Figure 8-16)

•	 Using IoT Edge modules

Figure 8-15.  IoT Edge set module

Figure 8-16.  IoT Edge set module page

Chapter 8 IoT Edge

145

The Azure Container Registry stores and manages private Docker

container images. You might have already worked with Docker Hub

(hub.docker.com), which stores and manages the public Docker container

images. To get your private modules from your Azure Container Registry,

you have to provide your credentials. With the help of credentials, the

Registry will retrieve the modules with a matching URL. Note that the

Edge Agent will report error code 500 if it cannot find a Container Registry

setting for a module.

The IoT Edge module is a Docker container that you can deploy to

your IoT Edge device. Luckily, there are enough pre-built modules in the

IoT Edge Module section of the Azure Marketplace (azuremarketplace.

microsoft.com). In this section, we will use one from the marketplace that

simulates a sensor and sends generated data.

Click + Add, and then select Marketplace Module from the IoT Edge

Modules section, as shown in Figure 8-17.

Once the IoT Edge Marketplace Module is loaded, search for the

Simulated Temperature Sensor module and add it (see Figure 8-18).

Figure 8-17.  IoT Edge marketplace Module

Chapter 8 IoT Edge

https://hub.docker.com/
https://azuremarketplace.microsoft.com
https://azuremarketplace.microsoft.com

146

The Simulated Temperature Sensor module is added with the desired

state. Click the Next button to set the routes, as shown in Figure 8-19.

Figure 8-18.  IoT Edge simulated module

Figure 8-19.  IoT Edge added module

Chapter 8 IoT Edge

147

The routes determine how messages are passed between modules

and the IoT Hub. With the help of routes, we can send the data to other

services, if necessary. As you can see in Figure 8-20, these routes are name/

value pairs, and you should see two routes there now. One is the default

route, which sends all the messages to the IoT Hub. The second one is

created automatically when you add the Simulated Temperature Sensor

module. Let’s check the value of that route.

FROM /messages/modules/SimulatedTemperatureSensor/* INTO $upstream

Once that is done, click the Next button.

Figure 8-20.  Module routes

Chapter 8 IoT Edge

148

On the next screen, you can preview the JSON file that defines all the

modules that are deployed to your IoT Edge device. If you want to make

any changes, this is when to do it. Here’s the example JSON file.

{

 "modulesContent": {

 "$edgeAgent": {

 "properties.desired": {

 "modules": {

 "SimulatedTemperatureSensor": {

 "settings": {

 �"image": "mcr.microsoft.com/

azureiotedge-simulated-temperature-

sensor:1.0",

 "createOptions": ""

 },

 "type": "docker",

 "status": "running",

 "restartPolicy": "always",

 "version": "1.0"

 }

 },

 "runtime": {

 "settings": {

 "minDockerVersion": "v1.25"

 },

 "type": "docker"

 },

 "schemaVersion": "1.0",

 "systemModules": {

 "edgeAgent": {

 "settings": {

Chapter 8 IoT Edge

149

 �"image": "mcr.microsoft.com/

azureiotedge-agent:1.0",

 "createOptions": ""

 },

 "type": "docker"

 },

 "edgeHub": {

 "settings": {

 �"image": "mcr.microsoft.com/

azureiotedge-hub:1.0",

 �"createOptions": "{\"HostConfig\":{

\"PortBindings\":{\"443/tcp\":[{\"H

ostPort\":\"443\"}],\"5671/tcp\":[{

\"HostPort\":\"5671\"}],\"8883/tcp\

":[{\"HostPort\":\"8883\"}]}}}"

 },

 "type": "docker",

 "status": "running",

 "restartPolicy": "always"

 }

 }

 }

 },

 "$edgeHub": {

 "properties.desired": {

 "routes": {

 "route": "FROM /messages/* INTO $upstream",

 �"SimulatedTemperatureSensorToIoTHub":

"FROM /messages/modules/

SimulatedTemperatureSensor/* INTO

$upstream"

 },

Chapter 8 IoT Edge

150

 "schemaVersion": "1.0",

 "storeAndForwardConfiguration": {

 "timeToLiveSecs": 7200

 }

 }

 },

 "SimulatedTemperatureSensor": {

 "properties.desired": {

 "SendData": true,

 "SendInterval": 5

 }

 }

 }

}

You can see the module that you had added as well as two runtime

modules—edgeAgent and edgeHub. Click the Create button when you

are done reviewing. It is worth it to mention that, when you submit a new

deployment to your IoT Edge, nothing is pushed to your device. Instead,

the device queries the IoT Hub regularly. If it finds an updated manifest, it

pulls the updated module image from the cloud and starts running those

modules locally.

This submission will take a few seconds, and once it is done, you

will see the "Successfully updated IoT Edge settings for device

rpiedge" notification. You can now check all the modules in the modules

list, as shown in Figure 8-21.

Chapter 8 IoT Edge

151

Figure 8-21.  Running modules

�Viewing Sent Messages
Since we have an IoT Edge device with modules running in it, let’s SSH into

that device and see the messages getting sent. See Figure 8-22.

To see the messages being sent from the simulator module, use the

following command.

sudo iotedge logs SimulatedTemperatureSensor -f

This will give you the output shown in Figure 8-23.

Figure 8-22.  New modules in the device

Chapter 8 IoT Edge

152

Isn’t this cool? We were able to use a module in our device without

having to configure that module specifically. So in the future, we can easily

add as many modules as required, without thinking about the device.

�Summary
Wow, you have finished this chapter. I hope you have learned the following

topics from this chapter:

•	 What IoT Edge is and the benefits of using it?

•	 What IoT Edge runtime is?

•	 What IoT Edge modules are?

•	 The capabilities of IoT Edge runtime.

•	 How to create an IoT Edge device?

•	 How to install IoT Edge runtime on Linux systems?

•	 How to deploy a module to an IoT Edge device and see

the data being sent to the IoT Hub?

I will see you in the next chapter.

Figure 8-23.  Simulator module messages

Chapter 8 IoT Edge

153© Sibeesh Venu 2020
S. Venu, Asp.Net Core and Azure with Raspberry Pi 4,
https://doi.org/10.1007/978-1-4842-6443-0_9

CHAPTER 9

Developing IoT Edge
Modules
�In the last chapter, you successfully deployed a module to your IoT Edge

device, but you used a module that was already in the marketplace. In this

chapter, you will learn how to develop your own module and deploy it.

Sound interesting? I cannot wait to show you how to do that. Let’s start.

�Prerequisites
Before we start, it is a good idea to list all the prerequisites you’ll need.

As usual, we will be using the Visual Studio Code for development. I am

developing the module on a Windows computer intending to target a

Linux device running IoT Edge, the Raspberry Pi. Other things to note are:

•	 Your development machine should support nested

virtualization. This is needed to run a container

engine. We use Docker Desktop to develop the

containers. You can easily switch between Linux

containers and Windows containers using Docker

https://doi.org/10.1007/978-1-4842-6443-0_9#DOI

154

Desktop (see Figure 9-1). This gives you the power to

create modules for different types of IoT Edge devices.

You can install Docker Desktop from the Docker Hub

(docs.docker.com/docker-for-windows/install).

•	 You should install Git, in order to pull the module

template package C# extension powered by OmniSharp.

Remember that we added this to Visual Studio?

�Setting Up VSCode
Because of the Azure IoT Tools extension, creating IoT solutions with

VSCode has never been easier. With this extension, you can easily create

projects using the given project templates, automate the deployment, and

monitor and manage IoT devices. Go to the Extensions tab in VSCode and

install Azure IoT Tools (see Figure 9-2).

Figure 9-1.  Docker switch to Windows containers

Chapter 9 Developing IoT Edge Modules

https://docs.docker.com/docker-for-windows/install

155

Once the extension is installed, go to the View menu and click

Command Palette. Search for and select Azure: Sign in. Azure will ask you

to sign in with your existing Azure account; remember to sign in with the

account you used to create the Azure IoT Hub.

Once you sign in, open the Command Palette again. Search for and

select Azure IoT Hub: Select IoT Hub, which will give you an option to

select your IoT Hub. When you are finished, you can see your devices in

the VSCode Explorer (choose View ➤ Explorer), as shown in Figure 9-3.

Figure 9-2.  Azure IoT Tools

Figure 9-3.  Azure IoT Explorer

Chapter 9 Developing IoT Edge Modules

156

�Creating an Azure Container Registry
This chapter aims to deploy the container image of the modules created

by using the Azure IoT Tool in any Docker-compatible registry. We will

use the Azure Container Registry in this example, but you can also use

Docker Hub. Let’s create an Azure Container Registry in the Azure Portal

now. Search for the Container Registry service and create it. Creating this

service is as easy as creating other services in Azure. It is recommended to

create the resource in the same resource group.

All the SKUs provide the same programmatic capabilities; however,

choosing the higher SKU will provide more performance and scale.

Table 9-1 shows some of the differences between the SKUs.

In this example, we will use the Basic SKU. When you are done, review

and create the resource. See Figure 9-4.

Table 9-1.  Container Registry Capabilities and Differences

Capability Basic Standard Premium

Price per day $0.17 $0.67 $1.67

Included

storage (GiB)

10 100 500

Offers enhanced throughput

for docker pulls across

multiple, concurrent nodes

Total web hooks 2 10 500

Geo Replication Not Supported Not Supported Supported

$1.667 per replicated region

Chapter 9 Developing IoT Edge Modules

157

Figure 9-4.  Azure Container Registry

Chapter 9 Developing IoT Edge Modules

158

Now go to the resource you just created and click the Access Keys from

the menu located under settings. From the given page, enable the Admin

user so that you can use the registry name as the username and use the

password generated to log in to your container registry. See Figure 9-5.

�Creating a New Project
As discussed earlier, it is very easy to create a new project with the IoT

Tools. To do this, open the Command Palette and search for and select

Azure IoT Edge: New IoT Edge Solution. Once you press Enter, it will ask

you to select the folder where the files should be saved and then to provide

a solution name. I named it raspberrypi.edge. Select C# Module when

asked to select the module template. You can name your module anything;

I named this example SendTelemetry. When you’re asked for the Docker

Figure 9-5.  Container Registry admin access

Chapter 9 Developing IoT Edge Modules

159

image repository for the module, provide the Login Server value that you

see in the Access Key section of your Azure Container Registry. It looks

similar to apresscr.azurecr.io/sendtelemetry. You can always edit this

value in the module.json file. See Figure 9-6.

Once the solution is created, go to the module. You’ll see the module.

json file there. This is how it looks:

{

 "$schema-version": "0.0.1",

 "description": "",

 "image": {

 "repository": "apresscr.azurecr.io/sendtelemetry",

 "tag": {

 "version": "0.0.1",

 "platforms": {

 "amd64": "./Dockerfile.amd64",

 "amd64.debug": "./Dockerfile.amd64.debug",

 "arm32v7": "./Dockerfile.arm32v7",

 "arm32v7.debug": "./Dockerfile.arm32v7.debug",

 "arm64v8": "./Dockerfile.arm64v8",

 "arm64v8.debug": "./Dockerfile.arm64v8.debug",

 "windows-amd64": "./Dockerfile.windows-amd64"

 }

 },

Figure 9-6.  Image repository

Chapter 9 Developing IoT Edge Modules

160

 "buildOptions": [],

 "contextPath": "./"

 },

 "language": "csharp"

}

The modules folder will contain all the modules. Right now, there is

only one module, which is where you write all of the main program code,

module metadata, and Dockerfiles.

The .env file stores the credentials of your container registry.

These credentials will be shared with your IoT Edge device to pull the

container images.

To deploy these modules, we need a deployment manifest file. This file

defines which modules will be deployed, how they should be configured,

and how they will communicate with each other and with the cloud. The

deployment.template.json and deployment.debug.template.json files

help create this manifest file. Here are the contents of these files:

deployment.debug.template.json:

{

 "$schema-template": "2.0.0",

 "modulesContent": {

 "$edgeAgent": {

 "properties.desired": {

 "schemaVersion": "1.0",

 "runtime": {

 "type": "docker",

 "settings": {

 "minDockerVersion": "v1.25",

 "loggingOptions": "",

 "registryCredentials": {

 "apresscr": {

Chapter 9 Developing IoT Edge Modules

161

 �"username": "$CONTAINER_REGISTRY_USERNAME_

apresscr",

 �"password": "$CONTAINER_REGISTRY_PASSWORD_

apresscr",

 "address": "apresscr.azurecr.io"

 }

 }

 }

 },

 "systemModules": {

 "edgeAgent": {

 "type": "docker",

 "settings": {

 �"image": "mcr.microsoft.com/azureiotedge-

agent:1.0",

 "createOptions": {}

 }

 },

 "edgeHub": {

 "type": "docker",

 "status": "running",

 "restartPolicy": "always",

 "settings": {

 �"image": "mcr.microsoft.com/azureiotedge-

hub:1.0",

 "createOptions": {

 "HostConfig": {

 "PortBindings": {

 "5671/tcp": [

 {

 "HostPort": "5671"

 }

Chapter 9 Developing IoT Edge Modules

162

],

 "8883/tcp": [

 {

 "HostPort": "8883"

 }

],

 "443/tcp": [

 {

 "HostPort": "443"

 }

]

 }

 }

 }

 }

 }

 },

 "modules": {

 "SendTelemetry": {

 "version": "1.0",

 "type": "docker",

 "status": "running",

 "restartPolicy": "always",

 "settings": {

 "image": "${MODULES.SendTelemetry.debug}",

 "createOptions": {}

 }

 },

 "SimulatedTemperatureSensor": {

 "version": "1.0",

 "type": "docker",

Chapter 9 Developing IoT Edge Modules

163

 "status": "running",

 "restartPolicy": "always",

 "settings": {

 �"image": "mcr.microsoft.com/azureiotedge-

simulated-temperature-sensor:1.0",

 "createOptions": {}

 }

 }

 }

 }

 },

 "$edgeHub": {

 "properties.desired": {

 "schemaVersion": "1.0",

 "routes": {

 �"SendTelemetryToIoTHub": "FROM /messages/modules/

SendTelemetry/outputs/* INTO $upstream",

 �"sensorToSendTelemetry": "FROM /messages/modules/

SimulatedTemperatureSensor/outputs/temperatureOutput

INTO BrokeredEndpoint(\"/modules/SendTelemetry/

inputs/input1\")"

 },

 "storeAndForwardConfiguration": {

 "timeToLiveSecs": 7200

 }

 }

 }

 }

}

Chapter 9 Developing IoT Edge Modules

164

deployment.template.json:

{

 "$schema-template": "2.0.0",

 "modulesContent": {

 "$edgeAgent": {

 "properties.desired": {

 "schemaVersion": "1.0",

 "runtime": {

 "type": "docker",

 "settings": {

 "minDockerVersion": "v1.25",

 "loggingOptions": "",

 "registryCredentials": {

 "apresscr": {

 �"username": "$CONTAINER_REGISTRY_USERNAME_

apresscr",

 �"password": "$CONTAINER_REGISTRY_PASSWORD_

apresscr",

 "address": "apresscr.azurecr.io"

 }

 }

 }

 },

 "systemModules": {

 "edgeAgent": {

 "type": "docker",

 "settings": {

 �"image": "mcr.microsoft.com/azureiotedge-

agent:1.0",

 "createOptions": {}

 }

Chapter 9 Developing IoT Edge Modules

165

 },

 "edgeHub": {

 "type": "docker",

 "status": "running",

 "restartPolicy": "always",

 "settings": {

 �"image": "mcr.microsoft.com/azureiotedge-

hub:1.0",

 "createOptions": {

 "HostConfig": {

 "PortBindings": {

 "5671/tcp": [

 {

 "HostPort": "5671"

 }

],

 "8883/tcp": [

 {

 "HostPort": "8883"

 }

],

 "443/tcp": [

 {

 "HostPort": "443"

 }

]

 }

 }

 }

 }

 }

 },

Chapter 9 Developing IoT Edge Modules

166

 "modules": {

 "SendTelemetry": {

 "version": "1.0",

 "type": "docker",

 "status": "running",

 "restartPolicy": "always",

 "settings": {

 "image": "${MODULES.SendTelemetry}",

 "createOptions": {}

 }

 },

 "SimulatedTemperatureSensor": {

 "version": "1.0",

 "type": "docker",

 "status": "running",

 "restartPolicy": "always",

 "settings": {

 �"image": "mcr.microsoft.com/azureiotedge-

simulated-temperature-sensor:1.0",

 "createOptions": {}

 }

 }

 }

 }

 },

 "$edgeHub": {

 "properties.desired": {

 "schemaVersion": "1.0",

 "routes": {

 �"SendTelemetryToIoTHub": "FROM /messages/modules/

SendTelemetry/outputs/* INTO $upstream",

Chapter 9 Developing IoT Edge Modules

167

 �"sensorToSendTelemetry": "FROM /messages/modules/

SimulatedTemperatureSensor/outputs/temperatureOutput

INTO BrokeredEndpoint(\"/modules/SendTelemetry/

inputs/input1\")"

 },

 "storeAndForwardConfiguration": {

 "timeToLiveSecs": 7200

 }

 }

 }

 }

}

As you can see, there are two modules in the deployment.template.

json file—SendTelemetry and SimulatedTemperatureSensor. Note that

the values for the username and password in the registry credentials

section come from the .env file when the deployment manifest is created.

It is also worth mentioning that the .env file is Git-ignored. Here are the

contents of the .gitignore file:

config/

.env

The credentials in the .env file are created automatically; however,

if they are not generated, you can copy and paste the username and

password from the Azure Container Registry.

Set the target architecture to arm32v7, since you are using Raspberry

Pi as the device here. To do this, open the Command Palette and search for

and select Azure IoT Edge: Set Default Target Platform for Edge Solution.

Then select arm32v7, as shown in Figure 9-7.

Chapter 9 Developing IoT Edge Modules

168

You should now see the message "azure-iot-edge.

setDefaultPlatform: The default platform is arm32v7 now." in the

output window. The solution that we just created includes sample code for

an IoT Edge module. The sample code demonstrates how communication

between modules works. The IoT Hub running on the device routes

messages from the output of one module to the input of one or more

modules. This communication is controlled or performed using the routes

configured in $edgeHub. You can see the desired properties of $edgeHub in

the deployment.template.json file:

 "$edgeHub": {

 "properties.desired": {

 "schemaVersion": "1.0",

 "routes": {

 �"SendTelemetryToIoTHub": "FROM /messages/modules/

SendTelemetry/outputs/* INTO $upstream",

 �"sensorToSendTelemetry": "FROM /messages/modules/

SimulatedTemperatureSensor/outputs/temperatureOutput

INTO BrokeredEndpoint(\"/modules/SendTelemetry/

inputs/input1\")"

 },

 "storeAndForwardConfiguration": {

 "timeToLiveSecs": 7200

 }

 }

 }

Figure 9-7.  Select the default architecture

Chapter 9 Developing IoT Edge Modules

169

As you can see, there are two routes—one sends the output of the

SendTelemtry module to IoT Hub, and the other sends the output of

SimulatedTemperatureSensor to the input of the SendTelemetry module.

Every route should have a source and sink property. We can also have a

where condition in the route to filter the messages, but that is optional.

Here is the syntax of the route:

"$edgeHub": {

 "properties.desired": {

 "routes": {

 �"route1": "FROM <source> WHERE <condition> INTO

<sink>",

 �"route2": "FROM <source> WHERE <condition> INTO

<sink>"

 },

 }

}

The source field specifies where the message comes from. Table 9-2

shows the possible values for the source.

Table 9-2.  Possible Source Properties

Source Description

/* All device-to-cloud messages or twin change

notifications from any module or leaf device

/twinChangeNotifications Any twin change (reported properties)

coming from any module or leaf device

/messages/* Any device-to-cloud message sent by a

module through some or no output, or by a

leaf device

(continued)

Chapter 9 Developing IoT Edge Modules

170

Here is an example of a route with a filter in it:

FROM /messages/* WHERE NOT IS_DEFINED($connectionModuleId) INTO

$upstream

All the messages coming from the modules include a system property

called connectionModuleId, so if you want to exclude module messages,

you can use this query with the condition.

The sink defines where the messages are sent. There are a few things

to note:

•	 Only modules and IoT Hub can receive messages

•	 Messages can’t be routed to other devices

•	 There are no wildcard options in the sink property

Source Description

/messages/modules/* Any device-to-cloud message sent by a

module through some or no output

/messages/

modules/<moduleId>/*

Any device-to-cloud message sent by a

specific module through some or no output

/messages/modules/

<moduleId>/outputs/*

Any device-to-cloud message sent by a

specific module through some output

/messages/

modules/<moduleId>/

outputs/<output>

Any device-to-cloud message sent by a

specific module through a specific output

Table 9-2.  (continued)

Chapter 9 Developing IoT Edge Modules

171

If you look in the Program.cs file, which is inside the modules\

SendTelemetry folder, you should see a handler called SetInputMessag

eHandlerAsync, which will be called when a message is received by the

module.

await ioTHubModuleClient.SetInputMessageHandlerAsync("input1",

PipeMessage, ioTHubModuleClient);

The SetInputMessageHandlerAsync method registers a new delegate

for the particular input. If a delegate is already associated with the input, it

will be replaced with the new one. Here is the Init method:

static async Task Init()

 {

 �MqttTransportSettings mqttSetting = new Mqtt

TransportSettings(TransportType.Mqtt_Tcp_Only);

 ITransportSettings[] settings = { mqttSetting };

 // Open a connection to the Edge runtime

 �ModuleClient ioTHubModuleClient = await

ModuleClient.CreateFromEnvironmentAsync(settings);

 await ioTHubModuleClient.OpenAsync();

 �Console.WriteLine("IoT Hub module client

initialized.");

Table 9-3.  Possible Sink Property Values

Sink Description

$upstream Send the message to IoT Hub

BrokeredEndpoint("/modules/

<moduleId>/inputs/<input>")

Send the message to a specific input of a

specific module

Chapter 9 Developing IoT Edge Modules

172

 // �Register callback to be called when a message is

received by the module

 �await ioTHubModuleClient.SetInputMessageHandler

Async("input1", PipeMessage, ioTHubModuleClient);

 }

As you can see, a message handler is the second parameter of the

SetInputMessageHandlerAsync method. This message handler pipes the

message and sends the event to the IoT device. Here is the PipeMessage

method:

 �static async Task<MessageResponse> PipeMessage(Message

message, object userContext)

 {

 �int counterValue = Interlocked.Increment(ref

counter);

 var moduleClient = userContext as ModuleClient;

 if (moduleClient == null)

 {

 �throw new InvalidOperationException("UserContext

doesn't contain " + "expected values");

 }

 byte[] messageBytes = message.GetBytes();

 �string messageString = Encoding.UTF8.GetString

(messageBytes);

 �Console.WriteLine($"Received message:

{counterValue}, Body: [{messageString}]");

 if (!string.IsNullOrEmpty(messageString))

 {

 �using (var pipeMessage = new

Message(messageBytes))

Chapter 9 Developing IoT Edge Modules

173

 {

 foreach (var prop in message.Properties)

 {

 �pipeMessage.Properties.Add(prop.Key,

prop.Value);

 }

 �await moduleClient.SendEventAsync

("output1", pipeMessage);

 Console.WriteLine("Received message sent");

 }

 }

 return MessageResponse.Completed;

 }

The SendEventAsync method processes the messages and sets up an

output queue (output1) to pass them. As we have gone through the files

and code, now we can try building our solution and generate the manifest.

Before we build the container image, we must perform a Docker login with

our Azure Container Registry credentials. Run the following command in

the Terminal (choose View ➤ Terminal).

docker login -u apresscr -p +sdF70FxKZ9C7NvyBZZHFDJHFPjBJ5EBa8M

apresscr.azurecr.io

You should now see the Login Succeeded message in the terminal

window. Let’s log in to the Azure Container Registry, right after performing

az login. When you run the az login command, it will ask you to log in

with your Azure account. After you do that, run the following command.

az acr login -n apresscr

Chapter 9 Developing IoT Edge Modules

174

If you get this error:

 'az' is not recognized as an internal or external command,

operable program or batch file

You need to install Azure CLI. The command uses the token created

when you executed az login. To build the solution, right-click the

deployment.template.json file and select Build and Push IoT Edge

Solution, as shown in Figure 9-8.

Figure 9-8.  Choose Build and Push IoT Edge Solution

Chapter 9 Developing IoT Edge Modules

175

This will run the Docker commands and you’ll be able to see the

progress in the terminal window. The build and push command performs

three operations:

•	 Creates a config folder that contains the full

deployment manifest, built out of information in the

deployment template.

•	 Runs a Docker build to build the container image

based on the appropriate Dockerfile for your target

architecture. Since we set the default architecture to

Arm32, it will use the Dockerfile.arm32v7 Dockerfile.

•	 In the end, it pushes the image repository to your

container registry by running the Docker push

command.

We also have to change the base image in the Dockerfile.arm32v7 file,

since we are using a Windows 64 bit machine and our target device has

an arm32 architecture. You can easily check this by running the following

commands:

pi@raspberrypi:~ $ uname -a

Linux raspberrypi 4.19.118-v7l+ #1311 SMP Mon Apr 27 14:26:42

BST 2020 armv7l GNU/Linux

pi@raspberrypi:~ $ uname -m

armv7l

If the uname -m command says armv7l, it is 32-bit. In my case, it is

arm71. So I had to build an arm32 container image on my 64-bit Windows

host machine and use it on my Raspberry Pi 4. Luckily, you can always

build arm32 and arm64 images on x64 machines, but will not be able to

run them.

Chapter 9 Developing IoT Edge Modules

176

As we already have a device running on Raspberry Pi, running is not

a problem for us. Open the Dockerfile.arm32v7 file and change the first

line from:

FROM mcr.microsoft.com/dotnet/core/sdk:3.1-buster-arm32v7 AS

build-env

to:

FROM mcr.microsoft.com/dotnet/core/sdk:3.1-buster AS build-env

This is how your Dockerfile should look now:

FROM mcr.microsoft.com/dotnet/core/sdk:3.1-buster AS build-env

WORKDIR /app

COPY *.csproj ./

RUN dotnet restore

COPY . ./

RUN dotnet publish -c Release -o out

FROM mcr.microsoft.com/dotnet/core/runtime:3.1-buster-slim-

arm32v7

WORKDIR /app

COPY --from=build-env /app/out ./

RUN useradd -ms /bin/bash moduleuser

USER moduleuser

ENTRYPOINT ["dotnet", "SendTelemetry.dll"]

Chapter 9 Developing IoT Edge Modules

177

Note that it may take a while the first time and will be faster when you

run it the next time. A new file called deployment.arm32v7.json is created

in the config folder; if you check the contents of this file, you can see that

all the credential values are updated from the .env file. Here is the sample

generated file:

{

 "modulesContent": {

 "$edgeAgent": {

 "properties.desired": {

 "schemaVersion": "1.0",

 "runtime": {

 "type": "docker",

 "settings": {

 "minDockerVersion": "v1.25",

 "loggingOptions": "",

 "registryCredentials": {

 "apresscr": {

 "username": "apresscr",

 �"password": "+sdF70FxKZGDGD9C7NvyBZZM2DPjBJ5

EBa8M",

 "address": "apresscr.azurecr.io"

 }

 }

 }

 },

 "systemModules": {

 "edgeAgent": {

 "type": "docker",

 "settings": {

 �"image": "mcr.microsoft.com/azureiotedge-

agent:1.0",

Chapter 9 Developing IoT Edge Modules

178

 "createOptions": "{}"

 }

 },

 "edgeHub": {

 "type": "docker",

 "status": "running",

 "restartPolicy": "always",

 "settings": {

 �"image": "mcr.microsoft.com/azureiotedge-

hub:1.0",

 �"createOptions": "{\"HostConfig\":{\"Port

Bindings\":{\"5671/tcp\":[{\"HostPort\":

\"5671\"}],\"8883/tcp\":[{\"HostPort\":

\"8883\"}],\"443/tcp\":[{\"HostPort\":

\"443\"}]}}}"

 }

 }

 },

 "modules": {

 "SendTelemetry": {

 "version": "1.0",

 "type": "docker",

 "status": "running",

 "restartPolicy": "always",

 "settings": {

 �"image": "apresscr.azurecr.io/sendtelemetry:

0.0.2-arm32v7",

 "createOptions": "{}"

 }

 },

 "SimulatedTemperatureSensor": {

 "version": "1.0",

Chapter 9 Developing IoT Edge Modules

179

 "type": "docker",

 "status": "running",

 "restartPolicy": "always",

 "settings": {

 �"image": "mcr.microsoft.com/azureiotedge-

simulated-temperature-sensor:1.0",

 "createOptions": "{}"

 }

 }

 }

 }

 },

 "$edgeHub": {

 "properties.desired": {

 "schemaVersion": "1.0",

 "routes": {

 �"SendTelemetryToIoTHub": "FROM /messages/modules/

SendTelemetry/outputs/* INTO $upstream",

 �"sensorToSendTelemetry": "FROM /messages/modules/

SimulatedTemperatureSensor/outputs/temperatureOutput

INTO BrokeredEndpoint(\"/modules/SendTelemetry/

inputs/input1\")"

 },

 "storeAndForwardConfiguration": {

 "timeToLiveSecs": 7200

 }

 }

 }

 }

}

Chapter 9 Developing IoT Edge Modules

180

Now log in to the Azure Portal and open the Container Registry

resource that you created. Click the Repositories menu item on the left

pane. This will show the module name there, which is sendtelemetry. See

Figure 9-9.

Figure 9-9.  Azure container registry repository

Chapter 9 Developing IoT Edge Modules

181

Now click the sendtelemetry repository. You should see your image

with the right version number and tag there, as shown in Figure 9-10.

If you click the tag, you’ll see full details of your image with the

manifest; see Figure 9-11.

Figure 9-10.  Send telemetry image

Chapter 9 Developing IoT Edge Modules

182

You can also change the version number of these container images.

This will help you have a separate set of functionalities in each version

and test the functionalities in a small set of devices before you deploy

the changes to the production. To change this version number, open the

module.json file inside your module folder—in our case, it is the modules\

SendTelemetry folder—and update the property version to the new

number. See Figure 9-12.

Figure 9-11.  Send telemetry image details

Chapter 9 Developing IoT Edge Modules

183

When you are done, right-click the deployment.template.json file

and select Build and Push IoT Edge Solution. This will build a new image

and push it to the container registry. Note that if you don’t change this

version number, it will overwrite the previous image in the container

registry.

When it’s done, go to your repository and refresh it. You should see two

images with appropriate version numbers, as shown in Figure 9-13.

Figure 9-12.  Change module version number

Chapter 9 Developing IoT Edge Modules

184

�Deploying the Modules to the Device
The container images are ready for action in our Container Registry, so it

is time to deploy them to our device. The question is, are you ready? If you

are ready, make sure that your device is up and running.

Go to the Visual Studio Code Explorer. Under the Azure IoT Hub,

expand the Devices menu, which will list all of your devices. Right-click

the device and select Create Deployment for Single Device, as shown in

Figure 9-14.

Figure 9-13.  New docker image in the container registry

Chapter 9 Developing IoT Edge Modules

185

Figure 9-14.  Deploy to the device

This will open a Windows Explorer window. Navigate to the config

folder and select deployment.arm32v7.json. You should now see the

following output in the output window.

[Edge] Start deployment to device [rpiedge]

[Edge] Deployment succeeded.

This will also add the Azure Container Registry credentials to the Set

Module page of your IoT Edge device (choose IoT Hub ➤ IoT Edge ➤ IoT

Edge Device ➤ Set Module). See Figure 9-15.

Chapter 9 Developing IoT Edge Modules

186

Now, click the device from the Azure IoT Hub section, and then click

the Refresh button. Go to the Modules section under your device; you

should see that the modules are running, as shown in Figure 9-16.

Figure 9-15.  Container registry credentials

Figure 9-16.  Modules running on the IoT Edge device

Chapter 9 Developing IoT Edge Modules

187

It may take a few minutes to start the modules, as the IoT Edge runtime

needs to get the new manifest and then update the new images from the

Azure Container Registry.

If you notice that your modules are in the “backoff” status, make sure

that you set the default architecture correctly and updated the Dockerfile

accordingly. You can also try restarting the Docker and IoT Edge services.

sudo systemctl restart docker

sudo systemctl restart iotedge

�Viewing Device Messages
One amazing thing about the IoT Tools extension is that you can see

everything in one place. To see the device messages, right-click the

device and select Start Monitoring Built-in Event Endpoint, as shown in

Figure 9-17.

Chapter 9 Developing IoT Edge Modules

188

You should now see the messages in the output window, as shown in

Figure 9-18.

Figure 9-17.  Viewing the device messages

Chapter 9 Developing IoT Edge Modules

189

You can also SSH to your Raspberry Pi and see the logs there. Let’s do

that now. The IoT Edge list command will show you all the modules in the

device, as shown in Figure 9-19.

Figure 9-18.  View device messages output

Figure 9-19.  IoT Edge list

Chapter 9 Developing IoT Edge Modules

190

To see the logs, run the iotedge logs SendTelemetry command. Note

that the module name is case-sensitive. See Figure 9-20.

�Summary
Wow, this was a long chapter, I know. I hope you found it interesting and

that you learned a lot about the following topics:

•	 The prerequisites for creating IoT Edge modules.

•	 How to set up Visual Studio Code to build IoT Edge

Solutions with custom modules?

•	 How to create an Azure Container Registry?

•	 How to create a new Azure IoT Edge Solution?

•	 How modules are connected through routes?

•	 How to deploy modules to a device?

•	 How to view messages from a device?

Are you ready for the next chapter? Just grab a coffee or a beer and join

me. I will wait for you there.

Figure 9-20.  Send Telemetry module logs

Chapter 9 Developing IoT Edge Modules

191© Sibeesh Venu 2020
S. Venu, Asp.Net Core and Azure with Raspberry Pi 4,
https://doi.org/10.1007/978-1-4842-6443-0_10

CHAPTER 10

Azure IoT Central
We are nearing the end of the book. In the previous chapter, you learned a

lot about IoT Edge. In this chapter, you will learn about IoT Central, what it

is, and why it is needed. If you are ready, let’s move on!

�Azure IoT Central
With IoT projects, it is all about connecting things and handling the

device’s data. Once we get the data, we display it somewhere so we can

easily check it every time. This can be a web application using Angular,

React JS, Vue JS, or ASP.NET MVC, and so on. To get real-time updates in a

web application, we can use the Azure Signal R service. But in this chapter,

we will be using an easier option so that we don’t have to worry about the

web application. We will use the SaaS offering from Microsoft, which is

Azure IoT Central.

�What Is Azure IoT Central
Azure IoT Central is an SaaS offering from Microsoft that reduces the cost

of developing, managing, and maintaining enterprise-grade IoT solutions.

It comes with a Web UI that allows you to monitor device conditions,

create rules, and manage millions of devices easily. There are over 30

https://doi.org/10.1007/978-1-4842-6443-0_10#DOI

192

Azure services integrated with Azure IoT Central, which makes it very user

friendly. In the end, from the user’s perspective, everything you need is

there. Are you excited to build one?

�IoT Hub vs. IoT Central
Though IoT Central was built on the PaaS offering IoT Hub, there are

certain differences between them:

•	 Azure IoT Hub is a PaaS offering that can connect

millions of devices securely and scale, whereas IoT

Central is an SaaS offering that can connect, manage,

and monitor devices at scale. We get an additional

dashboard with a customizable UI. We will discuss the

functionalities of this UI in the coming sections.

•	 The device-provisioning service setup is required

separately in IoT Hub, but IoT Central has a built-in

device-provisioning service.

•	 IoT Hub provides built-in event hub, service bus queue,

service bus topic, and storage endpoints to export the

data. Users can also use the message routing for the same

functionality. IoT Central provides data exports to Azure

Blob Storage, Azure Event Hubs, and Azure Service Bus.

�Creating an IoT Central Application
Creating an IoT Central application is as easy as creating any other service

in Azure. Go to https://azure.microsoft.com/en-au/services/iot-

central/ and click the Build a Solution button. This will redirect you to

https://apps.azureiotcentral.com, where you can log in with your

Microsoft account. You should see some ready-to-use templates available

for some industries, as shown in Figure 10-1.

Chapter 10 Azure IoT Central

https://azure.microsoft.com/en-au/services/iot-central/
https://azure.microsoft.com/en-au/services/iot-central/
https://apps.azureiotcentral.com/

193

Let’s create a custom application. To do this, just click the Create a

Custom App button. You can also do this by clicking the Burger menu, and

then choosing the Build menu item. You should see a custom template, as

shown in Figure 10-2. Just click it.

You should be given a form that you need to fill out with the

application name, pricing plan, contact info, and so on. You can choose the

Free plan, which will give you access for seven days with no commitments.

You will also be given a chance to convert your plan to a paid one.

Figure 10-1.  Industry-based IoT Central solutions

Figure 10-2.  Custom IoT Central solutions

Chapter 10 Azure IoT Central

194

Keep in mind that you will not be able to recover your application once

the trial period is over. You will have to create a new application in that

case, and if you choose to go with any plans other than free, you should

have a valid Azure subscription. When you are done filling out the form,

click the Create button.

It’s now time to create a device template. A device template defines the

capabilities of a device that connects to Azure IoT Central. Click the Device

templates menu under App Settings, as shown in Figure 10-3.

Figure 10-3.  Device templates

Chapter 10 Azure IoT Central

195

Clicking the +New button will start the process of setting up the device

template. The first step will be to select the device type. Select the IoT

device template type, as shown in Figure 10-4.

Click the Next: Customize button and give your device template a

proper name. I call this one Raspberry Pi. Click the Next: Review button

and then click the Create button.

The next step is to create a capability model. Click the Custom tab

on the next screen, as you are going to build the capability model from

scratch. You can also import the capability model if you already have one.

You will see how to export a capability model in the coming sections. See

Figure 10-5.

Figure 10-4.  Select the template type

Chapter 10 Azure IoT Central

196

Now you can add the specifications to the new device template. To do

so, click the +Add interface button and then select Custom, as shown in

Figure 10-6.

Figure 10-5.  Create a custom template

Figure 10-6.  Custom interface

Chapter 10 Azure IoT Central

197

An interface must define the capabilities of a device. Let’s start

building from the blank interface. On the next screen, we will be adding

the capabilities to our interface. One of the capabilities of our device is that

it needs to send temperature data. Click the +Add Capability button and

provide the details on the form, as shown in Figure 10-7.

A property of a device is a constant value. It will be sent to the IoT

Central application when the communication is initiated. In this case,

I placed my Raspberry device in my office. I have only one office in my

home, so I can call the property OfficeRoom. In a real-world scenario,

imagine that your device will send the location of your car, and in that case,

you can create the property with your car number, which is unique. To

add the property, click +Add Capability again and set the capability type to

property, as shown in Figure 10-8.

Figure 10-7.  Add capability

Figure 10-8.  Add property

Chapter 10 Azure IoT Central

198

This property can also be configuration data; for example, in our initial

application, we set the maximum temperature value for the alerts. This

value can be configured as a property. As this value is not a constant, the

property value will be changed. This kind of property is called “writable.”

A command is sent by the operator of the IoT Central application to

the remote device. The only difference between a writable property and a

command is that the writable property is limited to a single value, whereas

the command can contain any number of input fields. Imagine that your

device is in a car, sending location data, and the IoT Central application

can send the command to the device to make you remember to stop at a

location. Or it can send a command to take a picture. If you turn on the

Request option, you can add more data to the command. I hope you got

the idea. Click the +Add Capability and set the capability type to command,

as shown in Figure 10-9.

Figure 10-9.  Add command

Chapter 10 Azure IoT Central

199

When you are done, click the Save button. Once the capability is

added, it is time to create a device visualization view. Click the device

template, and then select the newly created device template. Click the

Views button. From the given options, select Visualizing the Device, as

shown in Figure 10-10.

On the next screen, choose the telemetry capability that we created

before. Click the Add Tile button and then click Save, as shown in

Figure 10-11.

Figure 10-10.  Visualizing the device

Chapter 10 Azure IoT Central

200

Figure 10-11.  Add tile

Chapter 10 Azure IoT Central

201

Click the Views and, from the right side, select Editing Device and

Cloud Data, as shown in Figure 10-12.

From the given form, select the properties that you created and

then click the Add Section button. Then click the Save button. See

Figure 10-13.

Figure 10-12.  Editing device and cloud data

Chapter 10 Azure IoT Central

202

Figure 10-13.  Select properties

Chapter 10 Azure IoT Central

203

When you are done, you can publish the device template; you

can connect the device only after publishing the device template. It is

worth mentioning that you can make only limited changes to the device

capability model after publishing. To modify an interface, you have

to create a new one. Click the Publish button on the top, as shown in

Figure 10-14.

Before publishing, make sure that you don’t have an interface that

doesn’t have any capabilities. Figure 10-15 is an example interface without

any capabilities.

Figure 10-14.  Publish the device template

Chapter 10 Azure IoT Central

204

When the publishing process is finished, you can see that the

capabilities are grayed out and you will no longer be able to edit them. You

can always export the interface and the device template for future uses.

Click the Export button, available at the top of the device template. See

Figure 10-16.

Figure 10-15.  Interface without capabilities

Chapter 10 Azure IoT Central

205

This will generate a JSON file with your device template name; in my

case, it is Raspberry Pi.json. Here are the contents of that file:

{

 "@id": "urn:apressIotCentral:RaspberryPi_6th:1",

 "@type": "CapabilityModel",

 "implements": [

 {

 "@id": "urn:apressIotCentral:RaspberryPi_6th:t2nevnx5f:1",

 "@type": "InterfaceInstance",

 "displayName": {

 "en": "Interface"

 },

 "name": "RaspberryPi_7fp",

 "schema": {

 "@id": "urn:apressIotCentral:RaspberryPi_7fp:1",

 "@type": "Interface",

Figure 10-16.  Export device template

Chapter 10 Azure IoT Central

206

 "displayName": {

 "en": "Interface"

 },

 "contents": [

 {

 �"@id": "urn:apressIotCentral:RaspberryPi_7fp:

Temperature:1",

 "@type": [

 "Telemetry",

 "SemanticType/Temperature"

],

 "description": {

 "en": "Temperature data"

 },

 "displayName": {

 "en": "Temperature"

 },

 "name": "Temperature",

 "schema": "double",

 "unit": "celsius"

 },

 {

 "@id": "urn:apressIotCentral:RaspberryPi_7fp:Room:1",

 "@type": "Property",

 "displayName": {

 "en": "Room"

 },

 "name": "Room",

 "writable": true,

 "schema": "string"

 },

Chapter 10 Azure IoT Central

207

 {

 �"@id": "urn:apressIotCentral:RaspberryPi_7fp:Take

ThePicture:1",

 "@type": "Command",

 "commandType": "synchronous",

 "durable": false,

 "request": {

 �"@id": "urn:apressIotCentral:RaspberryPi_7fp:Take

ThePicture:ImageType:1",

 "@type": "SchemaField",

 "displayName": {

 "en": "Image type"

 },

 "name": "ImageType",

 "schema": "string"

 },

 "displayName": {

 "en": "Take the picture"

 },

 "name": "TakeThePicture"

 }

]

 }

 }

],

 "displayName": {

 "en": "Raspberry Pi"

 },

 "@context": [

 "http://azureiot.com/v1/contexts/IoTModel.json"

]

}

Chapter 10 Azure IoT Central

208

�Creating a Device
As you have already created a device template, it is time to create a real

device that sends telemetry to IoT Central. Click the devices in the left

menu and then click the device template you just created. You should now

see a +New button, as shown in Figure 10-17. Click it.

You will be given a form to enter the details of your device. Make sure

that the template type is the same as the one you created recently. The

device name is just a unique name; you can be selective here. The device

ID is a unique identifier that is used to connect to the device. As we have

a device that will send the telemetry data, choose No for the simulated

device question. Click the Create button, as shown in Figure 10-18.

Figure 10-17.  Create a device

Chapter 10 Azure IoT Central

209

When it is done, a new device will be created with a Registered status.

�Getting the Device Connection Keys
We already created a device, so let’s get the connection keys. Click the

Connect button on the top-right menu. That will open a device connection

pop-up. Make a note of these values and remember to keep the connect

method set to Shared Access Signature (SAS), as shown in Figure 10-19.

Figure 10-18.  Device properties

Chapter 10 Azure IoT Central

210

Figure 10-19.  Device connection properties

Chapter 10 Azure IoT Central

211

�Creating a Device Application That Sends
Telemetry to IoT Central
We are going to create a device application that sends the telemetry data

to IoT Central. Let’s create a new folder called raspberrypi.net.core.

central and run the following command inside the folder. It will create a

.NET Core console application with all of its required packages:

dotnet new console --langVersion=latest && dotnet add package

Iot.Device.Bindings && dotnet add package Microsoft.Azure.

Devices.Client && dotnet add package Microsoft.Azure.Devices.

Provisioning.Transport.Mqtt && dotnet add package Microsoft.

Azure.Devices.Shared && dotnet add package Newtonsoft.Json

&& dotnet add package Microsoft.Azure.Devices.Provisioning.

Transport.Http

When the project is created, open it with VSCode and create an .env

file with the following variables.

IDSCOPE="<Replace with your IoT Central ID Scope>"

CENTRAL_DEVICE_ID="<Replace with your IoT Central Devic ID>"

PRIMARY_KEY="<Replace with your IoT Central Primary key>"

Don’t forget to update the values based on the connection properties

that you received. When you are done, you can start writing the program.

Open the Program.cs file and add the following using statements:

using System;

using System.Text;

using System.Threading;

using System.Threading.Tasks;

using Iot.Device.CpuTemperature;

using Microsoft.Azure.Devices.Client;

using Microsoft.Azure.Devices.Provisioning.Client;

Chapter 10 Azure IoT Central

http://raspberrypi.net

212

using Microsoft.Azure.Devices.Provisioning.Client.Transport;

using Microsoft.Azure.Devices.Shared;

using Newtonsoft.Json;

Now let’s get the required values from the .env file and add some other

variables.

 �private static string idScope = Environment.

GetEnvironmentVariable("ID_SCOPE");

 �private static string centralDeviceId = Environment.

GetEnvironmentVariable("CENTRAL_DEVICE_ID");

 �private static string primaryKey = Environment.

GetEnvironmentVariable("PRIMARY_KEY");

 �private const string endPoint = "global.azure-devices-

provisioning.net";

 �private static CpuTemperature _temperature = new

CpuTemperature();

 private static int _messageId = 0;

Before we start writing the Main program, let’s write a program that can

register the device:

 �private static async Task<DeviceRegistrationResult>

RegisterDeviceAsync(SecurityProviderSymmetricKey

security)

 {

 �using var transportHandler = new ProvisioningTransp

ortHandlerMqtt(TransportFallbackType.TcpOnly);

 �var provDeviceClient = ProvisioningDeviceClient.

Create(endPoint, idScope, security,

transportHandler);

 return await provDeviceClient.RegisterAsync();

 }

Chapter 10 Azure IoT Central

213

This method will register the current device using the Device

Provisioning Service and assign it to an IoT Hub. As discussed, Azure IoT

Central uses IoT Hub in the background. We also need a method that can

send telemetry data to IoT Central. Let’s write that method:

 �private static async Task SendMessage(DeviceClient

deviceClient, double temperature)

 {

 �var dataToSend = new Telemetry() { MessageId = ++_

messageId, Temperature = temperature };

 �var stringToSend = JsonConvert.

SerializeObject(dataToSend);

 �var messageToSend = new Message(Encoding.UTF8.

GetBytes(stringToSend));

 �await deviceClient.SendEventAsync(messageToSend).

ConfigureAwait(false);

 }

This method may look very familiar to you, as it looks the same as

the method we created in the initial chapters. We use a property class

to serialize the data. Keep in mind that the name of this property class

should be Telemetry, or else you will see some reporting errors in your IoT

Central dashboards because of the model name difference, so this data will

fall under unmodeled data.

 class Telemetry

 {

 [JsonPropertyAttribute(PropertyName = "Temperature")]

 public double Temperature { get; set; } = 0;

 [JsonPropertyAttribute(PropertyName = "MessageId")]

 public int MessageId { get; set; } = 0;

 }

Chapter 10 Azure IoT Central

214

Let’s write the Main method now, as we created all the supporting

methods.

 static async Task Main(string[] args)

 {

 try

 {

 �using var security = new SecurityProvider

SymmetricKey(centralDeviceId, primaryKey, null);

 �var deviceRegistrationResult = await

RegisterDeviceAsync(security);

 �if (deviceRegistrationResult.Status !=

ProvisioningRegistrationStatusType.Assigned)

return;

 �var auth = new DeviceAuthenticationWithRegistry

SymmetricKey(deviceRegistration

Result.DeviceId,

 �(security as SecurityProviderSymmetricKey).

GetPrimaryKey());

 �using var _deviceClient = DeviceClient.

Create(deviceRegistrationResult.AssignedHub,

auth, TransportType.Mqtt);

 while (true)

 {

 if (_temperature.IsAvailable)

 {

 �await SendMessage(_deviceClient,

_temperature.Temperature.Celsius);

 }

 Thread.Sleep(3000);

 }

 }

Chapter 10 Azure IoT Central

215

 catch (System.Exception ex)

 {

 Console.WriteLine($"Hm, that's an error: {ex}");

 }

 }

As you can see in the code, we get the AssignedHub from the Device

Registration Result. Once we get that, we send the telemetry to the Hub,

as simple as that. Now, all we have to do is run our application in the

Raspberry Pi. To do that, we need to update the launch.json and task.

json files inside the .vscode file.

Launch.json file:

{

 "version": "0.2.0",

 "configurations": [

 {

 "name": "Debug Publish, Launch, and Attach Debugger",

 "type": "coreclr",

 "request": "launch",

 "envFile": "${workspaceFolder}/.env",

 "preLaunchTask": "DebugPublish",

 �"program": "~/${workspaceFolderBasename}/${workspac

eFolderBasename}",

 "cwd": "~/${workspaceFolderBasename}",

 "stopAtEntry": false,

 "console": "internalConsole",

 "pipeTransport": {

 "pipeCwd": "${workspaceRoot}",

 "pipeProgram": "/usr/bin/ssh",

 "pipeArgs": [

 "pi@192.168.0.80"

],

Chapter 10 Azure IoT Central

216

 "debuggerPath": "~/vsdbg/vsdbg"

 }

 },

 {

 �"name": "Release Publish, Launch, and Attach

Debugger",

 "type": "coreclr",

 "request": "launch",

 "preLaunchTask": "ReleasePublish",

 �"program": "~/${workspaceFolderBasename}/${workspace

FolderBasename}",

 "cwd": "~/${workspaceFolderBasename}",

 "stopAtEntry": false,

 "console": "internalConsole",

 "pipeTransport": {

 "pipeCwd": "${workspaceRoot}",

 "pipeProgram": "/usr/bin/ssh",

 "pipeArgs": [

 "pi@192.168.0.80"

],

 "debuggerPath": "~/vsdbg/vsdbg"

 }

 }

]

}

As you can see, we use two tasks in the launch.json file. Let’s add

them to the task.json file.

Chapter 10 Azure IoT Central

217

{

 "version": "2.0.0",

 "tasks": [

 {

 "label": "DebugPublish",

 "command": "sh",

 "type": "shell",

 "problemMatcher": "$msCompile",

 "args": [

 "-c",

 �"\"dotnet publish -r linux-arm -c Debug -o ./bin/

linux-arm/publish ./${workspaceFolderBasename}.

csproj && rsync -rvuz ./bin/linux-arm/publish/ pi

@192.168.0.80:~/${workspaceFolderBasename}\"",

]

 },

 {

 "label": "ReleasePublish",

 "command": "sh",

 "type": "shell",

 "problemMatcher": "$msCompile",

 "args": [

 "-c",

 �"\"dotnet publish -r linux-arm -c

Release -o ./bin/linux-arm/publish

./${workspaceFolderBasename}.csproj && rsync -rvuz

./bin/linux-arm/publish/ pi@192.168.0.80:~/${wo

rkspaceFolderBasename}\"",

]

 }

]

}

Chapter 10 Azure IoT Central

218

Open your solution in VSCode. Press F1 and type and select

Remote-WSL: Reopen Folder in WSL. Now all you have to do is press

F5 and wait to see the magic. If you don’t see any errors in the console,

you are good to go. Congrats. Now go to your IoT Central application

and find the telemetry data there. Click the device that you created.

You should now see that the device status is “provisioned,” shown as in

Figure 10-20.

Click the device name from the grid and go to the View tab. You can see

the telemetry data in a graph there, as shown in Figure 10-21.

Figure 10-20.  Device is provisioned

Chapter 10 Azure IoT Central

219

You should also be able to see the raw data if you click the Raw Data tab.

�Test Property and Command
Remember that we created a writable property and a command when we

created the device template? Now, we will work on that. The first thing is

to create a handler for our writable property, Room. Keep in mind that this

is just a dummy scenario, and you can think of any real-time scenarios

and implement them the same way. Add the following code to the Main

method.

_deviceClient.SetDesiredPropertyUpdateCallbackAsync(HandleSetti

ngChanged, null).GetAwaiter().GetResult();

 Console.WriteLine("Done");

Figure 10-21.  Telemetry data in a graph

Chapter 10 Azure IoT Central

220

As you may have already guessed, we need to create the handler now.

 �static async Task HandleSettingChanged(TwinCollection

desiredProperties, object userContext)

 {

 var setting = "Room";

 if (desiredProperties.Contains(setting))

 {

 �var roomChange = reportedProperties[setting] =

desiredProperties[setting];

 }

 �await _deviceClient.UpdateReportedPropertiesAsync(r

eportedProperties);

 }

We have also made a few other changes.

•	 Added a private variable for DeviceClient

•	 Used the newly created device client variable

•	 Updated the SendMessage method

In the end, this is how your Program.cs file should look:

using System;

using System.Text;

using System.Threading;

using System.Threading.Tasks;

using Iot.Device.CpuTemperature;

using Microsoft.Azure.Devices.Client;

using Microsoft.Azure.Devices.Provisioning.Client;

using Microsoft.Azure.Devices.Provisioning.Client.Transport;

using Microsoft.Azure.Devices.Shared;

using Newtonsoft.Json;

Chapter 10 Azure IoT Central

221

namespace raspberrypi.net.core.central

{

 public class Program

 {

 �private static string idScope = Environment.

GetEnvironmentVariable("ID_SCOPE");

 �private static string centralDeviceId = Environment.

GetEnvironmentVariable("CENTRAL_DEVICE_ID");

 �private static string primaryKey = Environment.

GetEnvironmentVariable("PRIMARY_KEY");

 �private const string endPoint = "global.azure-devices-

provisioning.net";

 �private static CpuTemperature _temperature = new

CpuTemperature();

 �private static TwinCollection reportedProperties = new

TwinCollection();

 private static int _messageId = 0;

 private static DeviceClient _deviceClient;

 static async Task Main(string[] args)

 {

 try

 {

 �using var security = new SecurityProviderSymmet

ricKey(centralDeviceId, primaryKey, null);

 �var deviceRegistrationResult = await

RegisterDeviceAsync(security);

 �if (deviceRegistrationResult.Status !=

ProvisioningRegistrationStatusType.Assigned)

return;

 �var auth = new DeviceAuthenticationWithRegistry

SymmetricKey(deviceRegistrationResult.DeviceId,

Chapter 10 Azure IoT Central

222

 �(security as SecurityProviderSymmetricKey).

GetPrimaryKey());

 _�deviceClient = DeviceClient.

Create(deviceRegistrationResult.AssignedHub,

auth, TransportType.Mqtt);

 �_deviceClient.SetDesiredPropertyUpdateCallback

Async(HandleSettingChanged, null).GetAwaiter().

GetResult();

 Console.WriteLine("Done");

 �await SendMessage(_temperature.Temperature.

Celsius);

 }

 catch (System.Exception ex)

 {

 Console.WriteLine($"Hm, that's an error: {ex}");

 }

 }

 private static async Task SendMessage(double temperature)

 {

 while (true)

 {

 if (_temperature.IsAvailable)

 {

 �var dataToSend = new Telemetry() {

MessageId = ++_messageId, Temperature =

temperature };

 �var stringToSend = JsonConvert.

SerializeObject(dataToSend);

 �var messageToSend = new Message(Encoding.

UTF8.GetBytes(stringToSend));

Chapter 10 Azure IoT Central

223

 �await _deviceClient.SendEventAsync

(messageToSend).ConfigureAwait(false);

 }

 Thread.Sleep(3000);

 }

 }

 �private static async Task<DeviceRegistrationResult> Reg

isterDeviceAsync(SecurityProviderSymmetricKey security)

 {

 �using var transportHandler = new Provisioning

TransportHandlerMqtt(TransportFallbackType.TcpOnly);

 �var provDeviceClient = ProvisioningDeviceClient.

Create(endPoint, idScope, security, transportHandler);

 return await provDeviceClient.RegisterAsync();

 }

 �static async Task HandleSettingChanged(TwinCollection

desiredProperties, object userContext)

 {

 var setting = "Room";

 if (desiredProperties.Contains(setting))

 {

 �var roomChange = reportedProperties[setting] =

desiredProperties[setting];

 }

 �await _deviceClient.UpdateReportedPropertiesAsync(r

eportedProperties);

 }

 }

Chapter 10 Azure IoT Central

224

 class Telemetry

 {

 [JsonPropertyAttribute(PropertyName = "Temperature")]

 public double Temperature { get; set; } = 0;

 [JsonPropertyAttribute(PropertyName = "MessageId")]

 public int MessageId { get; set; } = 0;

 }

}

Now run your application and go to the IoT Central device section. On

the device page, go to the Form tab and type any value in the given textbox.

Then click the Save button. If you have enabled a debugger in the handler

method, you should now see the values, as shown in Figure 10-22.

Go back to the Raw Data tab on your device page; there should be an

entry for the property, as shown in Figure 10-23.

Figure 10-22.  Writable property value

Chapter 10 Azure IoT Central

225

You should also see a message on the Form tab saying that the property

value was accepted, as shown in Figure 10-24.

Figure 10-23.  Writable property record

Figure 10-24.  Form tab message

Chapter 10 Azure IoT Central

226

Let’s implement the TakeThePicture command now. As before, this

is just a dummy command to show you the flow. We need a direct method

handler to do that. Add the following code in the Main method, just before

the method to send the telemetry data.

_deviceClient.SetMethodHandlerAsync("TakeThePicture",

CommandTakeThePicture, null).Wait();

And a handler method.

 �private static Task<MethodResponse> CommandTakeThePictu

re(MethodRequest methodRequest, object userContext)

 {

 // Get the data from the payload

 �var payload = Encoding.UTF8.GetString

(methodRequest.Data);

 Console.WriteLine(payload);

 // Code to take the picture

 // Save in the given format

 // Return the image URL

 // Imagine that your device is setup with a camera

 //Acknowledge the direct method call

 �string result = "{\"result\": \"Executed : " +

methodRequest.Name + "\"}";

 �return Task.FromResult(new MethodResponse(Encoding.

UTF8.GetBytes(result), 200));

 }

Now go back to the Command tab on the device page and enter a value

PNG in the textbox. Click the Run button. You can also put a debugger on

the direct method so that you can debug the values. See Figure 10-25.

Chapter 10 Azure IoT Central

227

Figure 10-25.  The Debug command

You can also see the command’s run history in the portal. Go to

the Command tab and click the Command History link, as shown in

Figure 10-26.

Wow, you just handled your device remotely. Wasn’t that cool?

Figure 10-26.  The Command history link

Chapter 10 Azure IoT Central

228

�Summary
I enjoyed writing this chapter, as it involves a lot of hands-on work. I hope

you felt the same. In this chapter, you learned about the following topics:

•	 What is Azure IoT Central?

•	 What are the differences between Azure IoT Hub and

Azure IoT Central?

•	 How to create an Azure IoT Central application?

•	 How to create a device in Azure IoT Central?

•	 How to create a .NET Core application to send

telemetry data to Azure IoT Central?

•	 How to remotely handle a device from Azure IoT

Central?

Chapter 10 Azure IoT Central

229© Sibeesh Venu 2020
S. Venu, Asp.Net Core and Azure with Raspberry Pi 4,
https://doi.org/10.1007/978-1-4842-6443-0

�Summary

Thanks a lot for being with me this far. I appreciate that. I strongly believe

that you could learn something from this book and you will be able to

build your own IoT solution with Microsoft Azure. Albert Einstein once

said, “Learning is experience. Everything else is just information.” So, now

is the time to go build your IoT applications. I wish you all the very best.

You can always share your feedback about this book via email at

sibeesh.venu@gmail.com.

https://doi.org/10.1007/978-1-4842-6443-0#DOI

231© Sibeesh Venu 2020
S. Venu, Asp.Net Core and Azure with Raspberry Pi 4,
https://doi.org/10.1007/978-1-4842-6443-0

Index
A, B
Azure Cloud Shell

advanced settings, 65, 66
command, 67
deletion, 67
login, 66
select directory, 64, 65
storage account, 65

Azure Container Registry
admin access, 158
capabilities/differences, 156
creation, 156, 157

Azure IoT Central
Add Capability, 197
Add command, 198
Add property, 197
Add Tile, 199, 200
capability model, 195
connection keys, 209, 210
creating device, 208, 209
custom interface, 196
custom template, 195, 196
definition, 191
device application (see Device

application, Azure IoT
Central)

device templates, 194

Editing Device/Cloud Data, 201
export device template, 204, 205
Free plan, 193
industries, 192, 193
interface, 203, 204
vs. IoT Hub, 192
JSON file, 205–207
publish device template, 203
select properties, 201, 202
template type, 195
Visualizing Device, 199

Azure IoT Hub, 192
Azure Portal (see Azure Portal,

IoT Hub)
Cloud Shell (see Azure Cloud

Shell)
custom event message

properties, 85, 86
definition, 63
Raspberry Pi (see Raspberry Pi)
registering

create device, 74, 75
IoT Devices menu, 74

Azure IoT tools, 95
first page, 81, 82
installation, 81
IoT Hub

https://doi.org/10.1007/978-1-4842-6443-0#DOI

232

device monitoring, 84, 85
list, 82
selection, 83

options, 84
Azure Portal, IoT Hub

bi-directional
communication, 69

creation, 67
Device-to-Cloud-Partitions, 71
messages, 71
networking, 68, 69
resources/resource groups, 72
review/create, 73
select region, 68
size/scale, 69, 71
tags, 72
tier capabilities, 69, 70

Azure Security Center, 71

C
callback function, 113, 117
Cloud to Device Communication

backend application, 121
demo application, 125, 127
device-specific endpoint, 120
direct methods, 96–101, 103
IOT Hub, 96
receiving feedback, 124
scenarios, 95
SendCloudToDevice

MessageAsync, 121, 122
sending feedback, 122, 124

twin’s desired
properties, 104–107

CompleteAsync() function, 124
Connection, setup

hostname, 37
IPV6 address, 37
.NET debugger, 39
SSH certificate, 38
tasks, 36
WSL1, 36

D
Desired property

codeblock, 108
device application, 108
Main Method, 112, 113
OnDesiredProperty

ChangedAsync method
debugger, 118–120

Program.cs class, 114–117
Registry Manager, 111
service connect/registry read

permissions, 109, 110
telemetryConfig, 113

Device application, Azure IoT
Central

.env file, 211
launch.json file, 215, 216
Main method, 214, 215
packages, 211
Program.cs file, 211
provisioned, 218
register device, 212

Azure IoT tools (cont.)

INDEX

233

task.json file, 215–217
telemetry data, 213, 218, 219
unmodeled data, 213
update values, 211
variables, 212

Device Provisioning
Service, 70, 192, 213

E, F, G, H
Reported property, 107, 108, 113, 120

I, J, K
IoT Edge

creating device, 132, 134
definition, 129
deploying module, 142, 144–150
Linux systems, installing,

134–136, 138, 140–142
runtime, 130, 131
viewing sent images, 151, 152

IoT Edge modules
armv7l, 175
Azure CLI, 174
Azure container registry

repositories, 180
Build/Push, 174
change version number, 182, 183
command, 173
connectionModuleId, 170
default architecture, 167, 168
default platform, 168
deployment.arm32v7.json, 177

deployment.debug.template.
json, 160–167

deployment, device
backoff, 187
Container registry

credentials, 185, 186
creation, 184, 185
modules running, 186
output, 185

deployment.template.json
file, 168

Dockerfile.arm32v7 file, 175, 176
Docket Desktop, 154
$edgeHub, 168
.env file, 160, 167, 177–179
.gitignore file, 167
image repository, 159
Init method, 171
install Git, 154
module.json file, 159, 160
nested virtualization, 153
new docker image, 183, 184
operations, 175
PipeMessage method, 172, 173
possible source

properties, 169, 170
raspberrypi.edge, 158
route syntax, 169
sendtelemetry

repository, 181, 182
SetInputMessageHandler

Async, 171
SimulatedTemperature

Sensor, 169

INDEX

234

sink property values, 171
viewing device

messages, 187, 188
list, 189
output, 188, 189
sendtelemetry module

logs, 190
VSCode, 154, 155

IoT Edge Security Daemon, 135

L, M
Linux distribution, 34–36

N
.NET Core, 29, 30, 40–42

C# extension, 46
chdir, 44
code options, 46
debug window console, 60
dummy application, VSCode, 43
folder structure, 45
launch.json, 47
ms-dotnettools.charp

extension, 58, 59
name attribute, 52, 53
obj., 45
Program.cs file, 47
rewriting application, 51
rsync attribute, 53–56
type attribute, 53
VSCode variables, 56–58
WSL, 48–50

O, P, Q
OnDesiredPropertyChangedAsync

function, 117

R
Raspberry Pi

accessories, 5–10
arithmetic/logical operations, 1
B model, 5
change password warning

window, 26
checking connection, 23
command, 76
command tool, 24, 25
configuration window, 25
connection string, 80
.csproj file, 76
development/deployment, 19
DeviceClient, 79
DeviceData class, 76–78
history, 2, 3
IoT Devices list, 79
IoT Devices properties, 79, 80
package, 76
password changed, 27
Publish/Debug task, 80
send data, 80, 81
SSH, 19–21
version 4, 3
Wi-Fi configuration, 22

Raspberry Pi imager, 13–16
Raspbian

IoT Edge modules (cont.)

INDEX

235

downloading image/writing,
16, 17

NOOBS, 17
operating system, 10

ReceiveAsync() function, 124

S
SendCloudToDevice

MessageAsync(), 121
SendEventAsync method, 79, 173
SentToIoTHub method, 79
SetInputMessageHandlerAsync

method, 171, 172
Shared Access Signature (SAS), 209

T, U
TakeThePicture command

debug command, 226, 227
handler method, 226
history link, 227
Main method, 226

V
Visual Studio Code

(VSCode), 30, 153, 184

W, X, Y, Z
Windows 10 IoT, 11, 12
Windows Subsystem for

Linux (WSL), 48
installation, 32, 33
key points, 31
vs. WSL2, 31, 32

Windows Terminal
command-line tools, 87
configuration, 89, 90
emojis/icons, 89
font weight

support, 91
installation, 88
multiple tabs, 88
open folders, 91
open profile, 91
rename tab, 93
tab color, 92

Writable property
changes, 220
create handler, 220
Main method, 219
Program.cs file, 220–224
record, 224, 225
tab massage, 225
value, 224

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: About Raspberry Pi
	About Raspberry Pi
	The History of the Raspberry Pi
	About Raspberry Pi 4
	Raspberry Pi 4 Accessories

	Introduction to the Operating System
	Raspbian
	Windows 10 IoT
	About Windows 10 IoT Core
	Installing the Raspbian Operating System
	Using the Raspberry Pi Imager
	Manually Downloading the Image and Writing

	Using NOOBS to Install the OS

	Summary

	Chapter 2: Configuring Your Raspberry Pi
	Enabling SSH
	Enabling Wi-Fi Configuration
	Checking Whether the Pi Is Connected to Wi-Fi
	Connecting the Raspberry Pi via SSH
	Summary

	Chapter 3: Setting Up the Prerequisites to Develop the Application
	Developing the Application
	Using WSL
	WSL vs. WSL2
	Installing WSL

	Installing the Linux Distribution
	Setting Up the Connection to Raspberry Pi
	Installing .NET Core on Ubuntu
	Summary

	Chapter 4: Creating and Deploying a .NET Core Application to Raspberry Pi
	Creating a .NET Core Application
	Installing Visual Studio Code Remote WSL Extension
	Rewriting the Application
	Deploying the App to Raspberry Pi
	The Name Attribute
	The Request Attribute
	The Type Attribute
	The Rsync Attribute

	Variables in VSCode
	Debugging the App from Raspberry Pi
	Summary

	Chapter 5: Playing with Azure IoT Hub and Our Application
	Using Azure IoT Hub
	Creating an Azure IoT Hub
	Using Azure Cloud Shell
	Using Azure Portal

	Registering a Device in the IoT Hub

	Connecting Raspberry Pi to Azure IoT Hub
	Monitoring the Device Data and IoT Hub
	Adding Custom Event Message Properties
	Summary

	Chapter 6: Finally, A Windows Terminal That You Can Customize
	Using Windows Terminal
	Windows Terminal Key Features
	Support for Multiple Tabs
	Support for Emojis, Icons, and More

	Configuring Windows Terminal

	Windows Terminal Preview Version
	Open Folders in Windows Terminal
	Font Weight Support
	Support to Open a Profile as a Pane
	Change the Tab Color
	Rename a Tab

	Summary

	Chapter 7: Cloud to Device Communication
	Cloud-to-Device Communication Options
	Direct Methods
	Creating a Backend Application To Call the Direct Method

	Twin’s Desired Properties
	Reported Property
	Desired Property

	Cloud-to-Device Messages
	Sending the Cloud-to-Device Message
	Receiving the Cloud-to-Device Message and Sending Feedback
	Receiving Feedback from the Device

	Demo Application

	Summary

	Chapter 8: IoT Edge
	IoT Edge
	IoT Edge Runtime
	IoT Edge Modules
	Capabilities of IoT Edge Runtime

	Creating an IoT Edge Device
	Installing IoT Edge Runtime on Linux Systems
	Deploying a Module to IoT Edge Device
	Viewing Sent Messages
	Summary

	Chapter 9: Developing IoT Edge Modules
	Prerequisites
	Setting Up VSCode
	Creating an Azure Container Registry
	Creating a New Project
	Deploying the Modules to the Device
	Viewing Device Messages
	Summary

	Chapter 10: Azure IoT Central
	Azure IoT Central
	What Is Azure IoT Central
	IoT Hub vs. IoT Central
	Creating an IoT Central Application
	Creating a Device
	Getting the Device Connection Keys
	Creating a Device Application That Sends Telemetry to IoT Central
	Test Property and Command

	Summary

	Summary
	Index

